Apache Impala

  • Impala基本介绍
  • Impala与Hive关系
  • Impala与Hive异同
  • Impala使用的优化技术
  • 执行计划
  • 数据流
  • 内存使用
  • 调度
  • 容错
  • 适用面
  • Impala架构
  • Impalad
  • Impala State Store
  • CLI
  • Catalogd(目录)
  • Impala查询处理过程


Impala基本介绍

  • impala是cloudera提供的一款高效率的sql查询工具,提供实时的查询效果,官方测试性能比hive快10到100倍,其sql查询比sparkSQL还要更加快速,号称是当前大数据领域最快的查询sql工具,
  • impala是参照谷歌的新三篇论文(Caffeine–网络搜索引擎、Pregel–分布式图计算、Dremel–交互式分析工具)当中的Dremel实现而来,其中旧三篇论文分别是(BigTable,GFS,MapReduce)分别对应HBase HDFS以及MapReduce。
  • impala是基于hive并使用内存进行计算,兼顾数据仓库,具有实时,批处理,多并发等优点。

Impala与Hive关系

  • impala是基于hive的大数据分析查询引擎,直接使用hive的元数据库metadata,意味着impala元数据都存储在hive的metastore当中,并且impala兼容hive的绝大多数sql语法。所以需要安装impala的话,必须先安装hive,保证hive安装成功,并且还需要启动hive的metastore服务。
  • Hive元数据包含用Hive创建的database、table等元信息。元数据存储在关系型数据库中,如Derby、MySQL等。
  • 客户端连接metastore服务,metastore再去连接MySQL数据库来存取元数据。有了metastore服务,就可以有多个客户端同时连接,而且这些客户端不需要知道MySQL数据库的用户名和密码,只需要连接metastore 服务即可。
    nohup hive --service metastore >> ~/metastore.log 2>&1 &
  • impala 系统架构 impala apache_hive


  • Hive适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询。可以先使用hive进行数据转换处理,之后使用Impala在Hive处理后的结果数据集上进行快速的数据分析。

Impala与Hive异同

  • Impala 与Hive都是构建在Hadoop之上的数据查询工具各有不同的侧重适应面,但从客户端使用来看Impala与Hive有很多的共同之处,如数据表元数据、ODBC/JDBC驱动、SQL语法、灵活的文件格式、存储资源池等。
  • 但是Impala跟Hive最大的优化区别在于:没有使用 MapReduce进行并行计算,虽然MapReduce是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的SQL执行。与 MapReduce相比,Impala把整个查询分成一执行计划树,而不是一连串的MapReduce任务,在分发执行计划后,Impala使用拉式获取数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少的了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。Impala使用服务的方式避免每次执行查询都需要启动的开销,即相比Hive没了MapReduce启动时间。
Impala使用的优化技术
  • 使用LLVM产生运行代码,针对特定查询生成特定代码,同时使用Inline的方式减少函数调用的开销,加快执行效率。(C++特性)
  • 充分利用可用的硬件指令(SSE4.2)。
  • 更好的IO调度,Impala知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时Impala支持直接数据块读取和本地代码计算checksum。
  • 通过选择合适数据存储格式可以得到最好性能(Impala支持多种存储格式)。
  • 最大使用内存,中间结果不写磁盘,及时通过网络以stream的方式传递。
执行计划
  • Hive: 依赖于MapReduce执行框架,执行计划分成 map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会 被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
  • Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的 map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。
数据流
  • Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
  • Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。
内存使用
  • Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
  • Impala: 在遇到内存放不下数据时,版本1.0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的限制,最好还是与Hive配合使用。
调度
  • Hive: 任务调度依赖于Hadoop的调度策略。
  • Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器 目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前 Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。
容错
  • Hive: 依赖于Hadoop的容错能力。
  • Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败, 再查一次就好了,再查一次的成本很低)。
适用面
  • Hive: 复杂的批处理查询任务,数据转换任务。
  • Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。

Impala架构

Impala主要由Impalad、 State Store、Catalogd和CLI组成。

impala 系统架构 impala apache_impala 系统架构_02

Impalad
  • Impalad: 与DataNode运行在同一节点上,由Impalad进程表示,它接收客户端的查询请求(接收查询请求的Impalad为Coordinator,Coordinator通过JNI调用java前端解释SQL查询语句,生成查询计划树,再通过调度器把执行计划分发给具有相应数据的其它Impalad进行执行),读写数据,并行执行查询,并把结果通过网络流式的传送回给Coordinator,由Coordinator返回给客户端。同时Impalad也与State Store保持连接,用于确定哪个Impalad是健康和可以接受新的工作。
  • 在Impalad中启动三个ThriftServer: beeswax_server(连接客户端),hs2_server(借用Hive元数据), be_server(Impalad内部使用)和一个ImpalaServer服务。
Impala State Store
  • Impala State Store: 跟踪集群中的Impalad的健康状态及位置信息,由statestored进程表示,它通过创建多个线程来处理Impalad的注册订阅和与各Impalad保持心跳连接,各Impalad都会缓存一份State Store中的信息,当State Store离线后(Impalad发现State Store处于离线时,会进入recovery模式,反复注册,当State Store重新加入集群后,自动恢复正常,更新缓存数据)因为Impalad有State Store的缓存仍然可以工作,但会因为有些Impalad失效了,而已缓存数据无法更新,导致把执行计划分配给了失效的Impalad,导致查询失败。
CLI
  • CLI: 提供给用户查询使用的命令行工具(Impala Shell使用python实现),同时Impala还提供了Hue,JDBC, ODBC使用接口。
Catalogd(目录)
  • Catalogd:作为metadata访问网关,从Hive Metastore等外部catalog中获取元数据信息,放到impala自己的catalog结构中。impalad执行ddl命令时通过catalogd由其代为执行,该更新则由statestored广播。

Impala查询处理过程

  • Impalad分为Java前端与C++处理后端,接受客户端连接的Impalad即作为这次查询的Coordinator,Coordinator通过JNI调用Java前端对用户的查询SQL进行分析生成执行计划树。
  • Java前端产生的执行计划树以Thrift数据格式返回给C++后端(Coordinator)(执行计划分为多个阶段,每一个阶段叫做一个PlanFragment,每一个PlanFragment在执行时可以由多个Impalad实例并行执行(有些PlanFragment只能由一个Impalad实例执行,如聚合操作),整个执行计划为一执行计划树)。
  • Coordinator根据执行计划,数据存储信息(Impala通过libhdfs与HDFS进行交互。通过hdfsGetHosts方法获得文件数据块所在节点的位置信息),通过调度器(现在只有simple-scheduler, 使用round-robin算法)Coordinator::Exec对生成的执行计划树分配给相应的后端执行器Impalad执行(查询会使用LLVM进行代码生成,编译,执行),通过调用GetNext()方法获取计算结果。
  • 如果是insert语句,则将计算结果通过libhdfs写回HDFS当所有输入数据被消耗光,执行结束,之后注销此次查询服务。