进程描述符task_struct

    1、进程状态 

volatile long state;  
int exit_state;

    state成员的可能取值如下: 

#define TASK_RUNNING        0  
#define TASK_INTERRUPTIBLE  1  
#define TASK_UNINTERRUPTIBLE    2  
#define __TASK_STOPPED      4  
#define __TASK_TRACED       8  
/* in tsk->exit_state */  
#define EXIT_ZOMBIE     16  
#define EXIT_DEAD       32  
/* in tsk->state again */  
#define TASK_DEAD       64  
#define TASK_WAKEKILL       128  
#define TASK_WAKING     256

    系统中的每个进程都必然处于以上所列进程状态中的一种。

    TASK_RUNNING表示进程要么正在执行,要么正要准备执行。

    TASK_INTERRUPTIBLE表示进程被阻塞(睡眠),直到某个条件变为真。条件一旦达成,进程的状态就被设置为TASK_RUNNING。

    TASK_UNINTERRUPTIBLE的意义与TASK_INTERRUPTIBLE类似,除了不能通过接受一个信号来唤醒以外。

    __TASK_STOPPED表示进程被停止执行。

    __TASK_TRACED表示进程被debugger等进程监视。

    EXIT_ZOMBIE表示进程的执行被终止,但是其父进程还没有使用wait()等系统调用来获知它的终止信息。

    EXIT_DEAD表示进程的最终状态。

    EXIT_ZOMBIE和EXIT_DEAD也可以存放在exit_state成员中。 

    2、进程标识符(PID) 

pid_t pid;  
pid_t tgid;

    在CONFIG_BASE_SMALL配置为0的情况下,PID的取值范围是0到32767,即系统中的进程数最大为32768个。 

/* linux-2.6.38.8/include/linux/threads.h */  
#define PID_MAX_DEFAULT (CONFIG_BASE_SMALL ? 0x1000 : 0x8000)

    在Linux系统中,一个线程组中的所有线程使用和该线程组的领头线程(该组中的第一个轻量级进程)相同的PID,并被存放在tgid成员中。只有线程组的领头线程的pid成员才会被设置为与tgid相同的值。注意,getpid()系统调用返回的是当前进程的tgid值而不是pid值。

    3、进程内核栈 

void *stack;

    进程通过alloc_thread_info函数分配它的内核栈,通过free_thread_info函数释放所分配的内核栈。 

/* linux-2.6.38.8/kernel/fork.c */   
fp_t mask = GFP_KERNEL | __GFP_ZERO;  
#else  
    gfp_t mask = GFP_KERNEL;  
#endif  
return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);  
}  
static inline void free_thread_info(struct thread_info *ti)  
{  
long)ti, THREAD_SIZE_ORDER);  
}

    其中,THREAD_SIZE_ORDER宏在linux-2.6.38.8/arch/arm/include/asm/thread_info.h文件中被定义为1,也就是说alloc_thread_info函数通过调用__get_free_pages函数分配2个页的内存(它的首地址是8192 字节对齐的)。

    Linux内核通过thread_union联合体来表示进程的内核栈,其中THREAD_SIZE宏的大小为8192。 

union thread_union {  
struct thread_info thread_info;  
long stack[THREAD_SIZE/sizeof(long)];  
};

    当进程从用户态切换到内核态时,进程的内核栈总是空的,所以ARM的sp寄存器指向这个栈的顶端。因此,内核能够轻易地通过sp寄存器获得当前正在CPU上运行的进程。 

/* linux-2.6.38.8/arch/arm/include/asm/current.h */  
static inline struct task_struct *get_current(void)  
{  
return current_thread_info()->task;  
}  
  
#define current (get_current())  
  
/* linux-2.6.38.8/arch/arm/include/asm/thread_info.h */   
static inline struct thread_info *current_thread_info(void)  
{  
register unsigned long sp asm ("sp");  
return (struct thread_info *)(sp & ~(THREAD_SIZE - 1));  
}

    4、标记 

unsigned int flags; /* per process flags, defined below */

#define PF_KSOFTIRQD    0x00000001  /* I am ksoftirqd */  
#define PF_STARTING 0x00000002  /* being created */  
#define PF_EXITING  0x00000004  /* getting shut down */  
#define PF_EXITPIDONE   0x00000008  /* pi exit done on shut down */  
#define PF_VCPU     0x00000010  /* I'm a virtual CPU */  
#define PF_WQ_WORKER    0x00000020  /* I'm a workqueue worker */  
#define PF_FORKNOEXEC   0x00000040  /* forked but didn't exec */  
#define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */  
#define PF_SUPERPRIV    0x00000100  /* used super-user privileges */  
#define PF_DUMPCORE 0x00000200  /* dumped core */  
#define PF_SIGNALED 0x00000400  /* killed by a signal */  
#define PF_MEMALLOC 0x00000800  /* Allocating memory */  
#define PF_USED_MATH    0x00002000  /* if unset the fpu must be initialized before use */  
#define PF_FREEZING 0x00004000  /* freeze in progress. do not account to load */  
#define PF_NOFREEZE 0x00008000  /* this thread should not be frozen */  
#define PF_FROZEN   0x00010000  /* frozen for system suspend */  
#define PF_FSTRANS  0x00020000  /* inside a filesystem transaction */  
#define PF_KSWAPD   0x00040000  /* I am kswapd */  
#define PF_OOM_ORIGIN   0x00080000  /* Allocating much memory to others */  
#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */  
#define PF_KTHREAD  0x00200000  /* I am a kernel thread */  
#define PF_RANDOMIZE    0x00400000  /* randomize virtual address space */  
#define PF_SWAPWRITE    0x00800000  /* Allowed to write to swap */  
#define PF_SPREAD_PAGE  0x01000000  /* Spread page cache over cpuset */  
#define PF_SPREAD_SLAB  0x02000000  /* Spread some slab caches over cpuset */  
#define PF_THREAD_BOUND 0x04000000  /* Thread bound to specific cpu */  
#define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */  
#define PF_MEMPOLICY    0x10000000  /* Non-default NUMA mempolicy */  
#define PF_MUTEX_TESTER 0x20000000  /* Thread belongs to the rt mutex tester */  
#define PF_FREEZER_SKIP 0x40000000  /* Freezer should not count it as freezable */  
#define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */

    5、表示进程亲属关系的成员 

struct task_struct *real_parent; /* real parent process */  
struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */  
struct list_head children;  /* list of my children */  
struct list_head sibling;   /* linkage in my parent's children list */  
struct task_struct *group_leader;   /* threadgroup leader */

    在Linux系统中,所有进程之间都有着直接或间接地联系,每个进程都有其父进程,也可能有零个或多个子进程。拥有同一父进程的所有进程具有兄弟关系。

    real_parent指向其父进程,如果创建它的父进程不再存在,则指向PID为1的init进程。

    parent指向其父进程,当它终止时,必须向它的父进程发送信号。它的值通常与real_parent相同。

    children表示链表的头部,链表中的所有元素都是它的子进程。

    sibling用于把当前进程插入到兄弟链表中。

    group_leader指向其所在进程组的领头进程。

    6、ptrace系统调用 

 

gned long ptrace_message;  
siginfo_t *last_siginfo; /* For ptrace use.  */  
ifdef CONFIG_HAVE_HW_BREAKPOINT  
atomic_t ptrace_bp_refcnt;  
endif

    成员ptrace被设置为0时表示不需要被跟踪,它的可能取值如下: 

/* linux-2.6.38.8/include/linux/ptrace.h */  
#define PT_PTRACED  0x00000001  
#define PT_DTRACE   0x00000002  /* delayed trace (used on m68k, i386) */  
#define PT_TRACESYSGOOD 0x00000004  
#define PT_PTRACE_CAP   0x00000008  /* ptracer can follow suid-exec */  
#define PT_TRACE_FORK   0x00000010  
#define PT_TRACE_VFORK  0x00000020  
#define PT_TRACE_CLONE  0x00000040  
#define PT_TRACE_EXEC   0x00000080  
#define PT_TRACE_VFORK_DONE 0x00000100  
#define PT_TRACE_EXIT   0x00000200

    7、Performance Event 

 

#ifdef CONFIG_PERF_EVENTS  
struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];  
struct mutex perf_event_mutex;  
struct list_head perf_event_list;  
#endif

    Performance Event是一款随 Linux 内核代码一同发布和维护的性能诊断工具。这些成员用于帮助PerformanceEvent分析进程的性能问题。

       8、进程调度 

int prio, static_prio, normal_prio;  
unsigned int rt_priority;  
const struct sched_class *sched_class;  
struct sched_entity se;  
struct sched_rt_entity rt;  
unsigned int policy;  
cpumask_t cpus_allowed;

    实时优先级范围是0到MAX_RT_PRIO-1(即99),而普通进程的静态优先级范围是从MAX_RT_PRIO到MAX_PRIO-1(即100到139)。值越大静态优先级越低。 

/* linux-2.6.38.8/include/linux/sched.h */  
#define MAX_USER_RT_PRIO    100  
#define MAX_RT_PRIO     MAX_USER_RT_PRIO  
  
#define MAX_PRIO        (MAX_RT_PRIO + 40)  
#define DEFAULT_PRIO        (MAX_RT_PRIO + 20)

    static_prio用于保存静态优先级,可以通过nice系统调用来进行修改。

    rt_priority用于保存实时优先级。

    normal_prio的值取决于静态优先级和调度策略。

    prio用于保存动态优先级。

    policy表示进程的调度策略,目前主要有以下五种: 

#define SCHED_NORMAL        0  
#define SCHED_FIFO      1  
#define SCHED_RR        2  
#define SCHED_BATCH     3  
/* SCHED_ISO: reserved but not implemented yet */  
#define SCHED_IDLE      5

    SCHED_NORMAL用于普通进程,通过CFS调度器实现。SCHED_BATCH用于非交互的处理器消耗型进程。SCHED_IDLE是在系统负载很低时使用。

    SCHED_FIFO(先入先出调度算法)和SCHED_RR(轮流调度算法)都是实时调度策略。

    sched_class结构体表示调度类,目前内核中有实现以下四种: 

/* linux-2.6.38.8/kernel/sched_fair.c */   
static const struct sched_class fair_sched_class;  
/* linux-2.6.38.8/kernel/sched_rt.c */  
static const struct sched_class rt_sched_class;  
/* linux-2.6.38.8/kernel/sched_idletask.c */  
static const struct sched_class idle_sched_class;  
/* linux-2.6.38.8/kernel/sched_stoptask.c */  
static const struct sched_class stop_sched_class;

    se和rt都是调用实体,一个用于普通进程,一个用于实时进程,每个进程都有其中之一的实体。

    cpus_allowed用于控制进程可以在哪里处理器上运行。

9、进程地址空间 

struct mm_struct *mm, *active_mm;  
#ifdef CONFIG_COMPAT_BRK  
    unsigned brk_randomized:1;  
#endif  
#if defined(SPLIT_RSS_COUNTING)  
struct task_rss_stat    rss_stat;  
#endif

    mm指向进程所拥有的内存描述符,而active_mm指向进程运行时所使用的内存描述符。对于普通进程而言,这两个指针变量的值相同。但是,内核线程不拥有任何内存描述符,所以它们的mm成员总是为NULL。当内核线程得以运行时,它的active_mm成员被初始化为前一个运行进程的 active_mm值。

      rss_stat用来记录缓冲信息。 

    10、判断标志 

int exit_code, exit_signal;  
int pdeath_signal;  /*  The signal sent when the parent dies  */  
/* ??? */  
unsigned int personality;  
unsigned did_exec:1;  
unsigned in_execve:1;   /* Tell the LSMs that the process is doing an 
             * execve */  
unsigned in_iowait:1;  
  
  
/* Revert to default priority/policy when forking */  
unsigned sched_reset_on_fork:1;

    exit_code用于设置进程的终止代号,这个值要么是_exit()或exit_group()系统调用参数(正常终止),要么是由内核提供的一个错误代号(异常终止)。

    exit_signal被置为-1时表示是某个线程组中的一员。只有当线程组的最后一个成员终止时,才会产生一个信号,以通知线程组的领头进程的父进程。

    pdeath_signal用于判断父进程终止时发送信号。

    personality用于处理不同的ABI,它的可能取值如下: 

enum {  
    PER_LINUX =     0x0000,  
    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,  
    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,  
    PER_SVR4 =      0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,  
    PER_SVR3 =      0x0002 | STICKY_TIMEOUTS | SHORT_INODE,  
    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS |  
                     WHOLE_SECONDS | SHORT_INODE,  
    PER_OSR5 =      0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,  
    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,  
    PER_ISCR4 =     0x0005 | STICKY_TIMEOUTS,  
    PER_BSD =       0x0006,  
    PER_SUNOS =     0x0006 | STICKY_TIMEOUTS,  
    PER_XENIX =     0x0007 | STICKY_TIMEOUTS | SHORT_INODE,  
    PER_LINUX32 =       0x0008,  
    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,  
/* IRIX5 32-bit */  
/* IRIX6 new 32-bit */  
/* IRIX6 64-bit */  
    PER_RISCOS =        0x000c,  
    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,  
    PER_UW7 =       0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,  
/* OSF/1 v4 */  
    PER_HPUX =      0x0010,  
    PER_MASK =      0x00ff,  
};

    did_exec用于记录进程代码是否被execve()函数所执行。

    in_iowait用于判断是否进行iowait计数。

    sched_reset_on_fork用于判断是否恢复默认的优先级或调度策略。

    11、时间 

cputime_t utime, stime, utimescaled, stimescaled;  
    cputime_t gtime;  
#ifndef CONFIG_VIRT_CPU_ACCOUNTING  
    cputime_t prev_utime, prev_stime;  
#endif  
long nvcsw, nivcsw; /* context switch counts */  
struct timespec start_time;         /* monotonic time */  
struct timespec real_start_time;    /* boot based time */  
struct task_cputime cputime_expires;  
struct list_head cpu_timers[3];  
#ifdef CONFIG_DETECT_HUNG_TASK  
/* hung task detection */  
long last_switch_count;  
#endif

    utime/stime用于记录进程在用户态/内核态下所经过的节拍数(定时器)

    utimescaled/stimescaled也是用于记录进程在用户态/内核态的运行时间,但它们以处理器的频率为刻度。

    gtime是以节拍计数的虚拟机运行时间(guest time)。

    nvcsw/nivcsw是自愿(voluntary)/非自愿(involuntary)上下文切换计数。last_switch_count是nvcsw和nivcsw的总和。

    start_time和real_start_time都是进程创建时间,real_start_time还包含了进程睡眠时间,常用于/proc/pid/stat,

    cputime_expires用来统计进程或进程组被跟踪的处理器时间,其中的三个成员对应着cpu_timers[3]的三个链表。

    12、信号处理 

/* signal handlers */  
struct signal_struct *signal;  
struct sighand_struct *sighand;  
  
    sigset_t blocked, real_blocked;  
/* restored if set_restore_sigmask() was used */  
struct sigpending pending;  
  
long sas_ss_sp;  
size_t sas_ss_size;  
int (*notifier)(void *priv);  
void *notifier_data;  
    sigset_t *notifier_mask;

    signal指向进程的信号描述符。

    sighand指向进程的信号处理程序描述符。

    blocked表示被阻塞信号的掩码,real_blocked表示临时掩码。

    pending存放私有挂起信号的数据结构。

    sas_ss_sp是信号处理程序备用堆栈的地址,sas_ss_size表示堆栈的大小。

    设备驱动程序常用notifier指向的函数来阻塞进程的某些信号(notifier_mask是这些信号的位掩码),notifier_data指的是notifier所指向的函数可能使用的数据。

    13、其他

    (1)、用于保护资源分配或释放的自旋锁 

/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 
 * mempolicy */  
    spinlock_t alloc_lock;

    (2)、进程描述符使用计数,被置为2时,表示进程描述符正在被使用而且其相应的进程处于活动状态。 

atomic_t usage;

    (3)、用于表示获取大内核锁的次数,如果进程未获得过锁,则置为-1。 

int lock_depth;     /* BKL lock depth */

    (4)、在SMP上帮助实现无加锁的进程切换(unlocked context switches) 

#ifdef CONFIG_SMP  
#ifdef __ARCH_WANT_UNLOCKED_CTXSW  
int oncpu;  
#endif  
#endif

    (5)、preempt_notifier结构体链表 

#ifdef CONFIG_PREEMPT_NOTIFIERS  
/* list of struct preempt_notifier: */  
struct hlist_head preempt_notifiers;  
#endif

    (6)、FPU使用计数 

unsigned char fpu_counter;

    (7)、blktrace是一个针对Linux内核中块设备I/O层的跟踪工具。 

#ifdef CONFIG_BLK_DEV_IO_TRACE  
int btrace_seq;  
#endif

    (8)、RCU同步原语 

#ifdef CONFIG_PREEMPT_RCU  
int rcu_read_lock_nesting;  
char rcu_read_unlock_special;  
struct list_head rcu_node_entry;  
#endif /* #ifdef CONFIG_PREEMPT_RCU */  
#ifdef CONFIG_TREE_PREEMPT_RCU  
struct rcu_node *rcu_blocked_node;  
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */  
#ifdef CONFIG_RCU_BOOST  
struct rt_mutex *rcu_boost_mutex;  
#endif /* #ifdef CONFIG_RCU_BOOST */

    (9)、用于调度器统计进程的运行信息 

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)  
struct sched_info sched_info;  
#endif

    (10)、用于构建进程链表 

 

struct list_head tasks;

    (11)、to limit pushing to one attempt 

#ifdef CONFIG_SMP  
struct plist_node pushable_tasks;  
#endif

        (12)、防止内核堆栈溢出 

#ifdef CONFIG_CC_STACKPROTECTOR  
/* Canary value for the -fstack-protector gcc feature */  
long stack_canary;  
#endif

    在GCC编译内核时,需要加上-fstack-protector选项。

    (13)、PID散列表和链表 

 

/* PID/PID hash table linkage. */  
struct pid_link pids[PIDTYPE_MAX];  
struct list_head thread_group; //线程组中所有进程的链表

    (14)、do_fork函数 

 

struct completion *vfork_done;      /* for vfork() */  
int __user *set_child_tid;      /* CLONE_CHILD_SETTID */  
int __user *clear_child_tid;        /* CLONE_CHILD_CLEARTID */

    在执行do_fork()时,如果给定特别标志,则vfork_done会指向一个特殊地址。

    如果copy_process函数的clone_flags参数的值被置为CLONE_CHILD_SETTID或 CLONE_CHILD_CLEARTID,则会把child_tidptr参数的值分别复制到set_child_tid和 clear_child_tid成员。这些标志说明必须改变子进程用户态地址空间的child_tidptr所指向的变量的值。

    (15)、缺页统计 

/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */  
long min_flt, maj_flt;

    (16)、进程权能 

 

const struct cred __rcu *real_cred; /* objective and real subjective task 
                 * credentials (COW) */  
const struct cred __rcu *cred;  /* effective (overridable) subjective task 
                 * credentials (COW) */  
struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */

    (17)、相应的程序名 

char comm[TASK_COMM_LEN];

    (18)、文件 

/* file system info */  
int link_count, total_link_count;  
/* filesystem information */  
struct fs_struct *fs;  
/* open file information */  
struct files_struct *files;

    fs用来表示进程与文件系统的联系,包括当前目录和根目录。

    files表示进程当前打开的文件。

    (19)、进程通信(SYSVIPC) 

#ifdef CONFIG_SYSVIPC  
/* ipc stuff */  
struct sysv_sem sysvsem;  
#endif

    (20)、处理器特有数据 

/* CPU-specific state of this task */  
struct thread_struct thread;

    (21)、命名空间 

 

/* namespaces */  
struct nsproxy *nsproxy;

    (22)、进程审计 

struct audit_context *audit_context;  
#ifdef CONFIG_AUDITSYSCALL  
    uid_t loginuid;  
int sessionid;  
#endif

    (23)、secure computing 

seccomp_t seccomp;

    (24)、用于copy_process函数使用CLONE_PARENT 标记时 

/* Thread group tracking */  
    u32 parent_exec_id;  
    u32 self_exec_id;

    (25)、中断 

#ifdef CONFIG_GENERIC_HARDIRQS  
/* IRQ handler threads */  
struct irqaction *irqaction;  
#endif  
#ifdef CONFIG_TRACE_IRQFLAGS  
int irq_events;  
long hardirq_enable_ip;  
long hardirq_disable_ip;  
int hardirq_enable_event;  
int hardirq_disable_event;  
int hardirqs_enabled;  
int hardirq_context;  
long softirq_disable_ip;  
long softirq_enable_ip;  
int softirq_disable_event;  
int softirq_enable_event;  
int softirqs_enabled;  
int softirq_context;  
#endif

    (26)、task_rq_lock函数所使用的锁 

/* Protection of the PI data structures: */  
raw_spinlock_t pi_lock;

    (27)、基于PI协议的等待互斥锁,其中PI指的是priority inheritance(优先级继承) 

#ifdef CONFIG_RT_MUTEXES  
/* PI waiters blocked on a rt_mutex held by this task */  
struct plist_head pi_waiters;  
/* Deadlock detection and priority inheritance handling */  
struct rt_mutex_waiter *pi_blocked_on;  
#endif

    (28)、死锁检测 

#ifdef CONFIG_DEBUG_MUTEXES  
/* mutex deadlock detection */  
struct mutex_waiter *blocked_on;  
#endif

    (29)、lockdep,参见内核说明文档linux-2.6.38.8/Documentation/lockdep-design.txt 

#ifdef CONFIG_LOCKDEP  
# define MAX_LOCK_DEPTH 48UL  
    u64 curr_chain_key;  
int lockdep_depth;  
int lockdep_recursion;  
struct held_lock held_locks[MAX_LOCK_DEPTH];  
    gfp_t lockdep_reclaim_gfp;  
#endif

    (30)、JFS文件系统 

/* journalling filesystem info */  
void *journal_info;

    (31)、块设备链表 

/* stacked block device info */  
struct bio_list *bio_list;

    (32)、内存回收 

struct reclaim_state *reclaim_state;

    (33)、存放块设备I/O数据流量信息

struct backing_dev_info *backing_dev_info;

    (34)、I/O调度器所使用的信息 

struct io_context *io_context;

    (35)、记录进程的I/O计数 

struct task_io_accounting ioac;

if defined(CONFIG_TASK_XACCT)  

u64 acct_rss_mem1;  /* accumulated rss usage */  

u64 acct_vm_mem1;   /* accumulated virtual memory usage */  

cputime_t acct_timexpd; /* stime + utime since last update */  

endif  

    在Ubuntu 11.04上,执行cat获得进程1的I/O计数如下: 

$ sudo cat /proc/1/io

rchar: 164258906  
wchar: 455212837  
syscr: 388847  
syscw: 92563  
read_bytes: 439251968  
write_bytes: 14143488  
cancelled_write_bytes: 2134016

    输出的数据项刚好是task_io_accounting结构体的所有成员。

    (36)、CPUSET功能 

#ifdef CONFIG_CPUSETS  
/* Protected by alloc_lock */  
int mems_allowed_change_disable;  
int cpuset_mem_spread_rotor;  
int cpuset_slab_spread_rotor;  
#endif

    (37)、Control Groups 

#ifdef CONFIG_CGROUPS  
/* Control Group info protected by css_set_lock */  
struct css_set __rcu *cgroups;  
/* cg_list protected by css_set_lock and tsk->alloc_lock */  
struct list_head cg_list;  
#endif  
#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */  
struct memcg_batch_info {  
int do_batch;   /* incremented when batch uncharge started */  
struct mem_cgroup *memcg; /* target memcg of uncharge */  
long bytes;        /* uncharged usage */  
long memsw_bytes; /* uncharged mem+swap usage */  
    } memcg_batch;  
#endif

    (38)、futex同步机制 

#ifdef CONFIG_FUTEX  
struct robust_list_head __user *robust_list;  
#ifdef CONFIG_COMPAT  
struct compat_robust_list_head __user *compat_robust_list;  
#endif  
struct list_head pi_state_list;  
struct futex_pi_state *pi_state_cache;  
#endif

    (39)、非一致内存访问(NUMA  Non-Uniform Memory Access) 

#ifdef CONFIG_NUMA  
struct mempolicy *mempolicy;    /* Protected by alloc_lock */  
short il_next;  
#endif

    (40)、文件系统互斥资源 

atomic_t fs_excl;   /* holding fs exclusive resources */

    (41)、RCU链表 

 
     
 
     
 
   
struct rcu_head rcu;

    (42)、管道 

struct pipe_inode_info *splice_pipe;

    (43)、延迟计数 

#ifdef  CONFIG_TASK_DELAY_ACCT  
struct task_delay_info *delays;  
#endif

    (44)、fault injection

#ifdef CONFIG_FAULT_INJECTION  
int make_it_fail;  
#endif

    (45)、FLoating proportions 

 
     
 
     
 
   
struct prop_local_single dirties;

    (46)、Infrastructure for displayinglatency 

#ifdef CONFIG_LATENCYTOP
int latency_record_count;  
struct latency_record latency_record[LT_SAVECOUNT];  
#endif

    (47)、time slack values,常用于poll和select函数 

unsigned long timer_slack_ns;  
unsigned long default_timer_slack_ns;

    (48)、socket控制消息(control message) 

 
     
 
     
 
   
struct list_head    *scm_work_list;

    (49)、ftrace跟踪器 

#ifdef CONFIG_FUNCTION_GRAPH_TRACER  
/* Index of current stored address in ret_stack */  
int curr_ret_stack;  
/* Stack of return addresses for return function tracing */  
struct ftrace_ret_stack *ret_stack;  
/* time stamp for last schedule */  
long long ftrace_timestamp;  
/* 
     * Number of functions that haven't been traced 
     * because of depth overrun. 
     */  
    atomic_t trace_overrun;  
/* Pause for the tracing */  
    atomic_t tracing_graph_pause;  
#endif  
#ifdef CONFIG_TRACING  
/* state flags for use by tracers */  
long trace;  
/* bitmask of trace recursion */  
long trace_recursion;  
#endif /* CONFIG_TRACING */   9、进程地址空间


struct mm_struct *mm, *active_mm;  
#ifdef CONFIG_COMPAT_BRK  
    unsigned brk_randomized:1;  
#endif  
#if defined(SPLIT_RSS_COUNTING)  
struct task_rss_stat    rss_stat;  
#endif

    mm指向进程所拥有的内存描述符,而active_mm指向进程运行时所使用的内存描述符。对于普通进程而言,这两个指针变量的值相同。但是,内核线程不拥有任何内存描述符,所以它们的mm成员总是为NULL。当内核线程得以运行时,它的active_mm成员被初始化为前一个运行进程的 active_mm值。

       rss_stat用来记录缓冲信息。 

    10、判断标志 

int exit_code, exit_signal;  
int pdeath_signal;  /*  The signal sent when the parent dies  */  
/* ??? */  
unsigned int personality;  
unsigned did_exec:1;  
unsigned in_execve:1;   /* Tell the LSMs that the process is doing an 
             * execve */  
unsigned in_iowait:1;  
  
  
/* Revert to default priority/policy when forking */  
unsigned sched_reset_on_fork:1;

    exit_code用于设置进程的终止代号,这个值要么是_exit()或exit_group()系统调用参数(正常终止),要么是由内核提供的一个错误代号(异常终止)。

    exit_signal被置为-1时表示是某个线程组中的一员。只有当线程组的最后一个成员终止时,才会产生一个信号,以通知线程组的领头进程的父进程。

    pdeath_signal用于判断父进程终止时发送信号。

    personality用于处理不同的ABI,它的可能取值如下: 

enum {  
    PER_LINUX =     0x0000,  
    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,  
    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,  
    PER_SVR4 =      0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,  
    PER_SVR3 =      0x0002 | STICKY_TIMEOUTS | SHORT_INODE,  
    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS |  
                     WHOLE_SECONDS | SHORT_INODE,  
    PER_OSR5 =      0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,  
    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,  
    PER_ISCR4 =     0x0005 | STICKY_TIMEOUTS,  
    PER_BSD =       0x0006,  
    PER_SUNOS =     0x0006 | STICKY_TIMEOUTS,  
    PER_XENIX =     0x0007 | STICKY_TIMEOUTS | SHORT_INODE,  
    PER_LINUX32 =       0x0008,  
    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,  
/* IRIX5 32-bit */  
/* IRIX6 new 32-bit */  
/* IRIX6 64-bit */  
    PER_RISCOS =        0x000c,  
    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,  
    PER_UW7 =       0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,  
/* OSF/1 v4 */  
    PER_HPUX =      0x0010,  
    PER_MASK =      0x00ff,  
};

    did_exec用于记录进程代码是否被execve()函数所执行。

    in_execve用于通知LSM是否被do_execve()函数所调用。

    in_iowait用于判断是否进行iowait计数。
    sched_reset_on_fork用于判断是否恢复默认的优先级或调度策略。
    11、时间 

cputime_t utime, stime, utimescaled, stimescaled;  
    cputime_t gtime;  
#ifndef CONFIG_VIRT_CPU_ACCOUNTING  
    cputime_t prev_utime, prev_stime;  
#endif  
long nvcsw, nivcsw; /* context switch counts */  
struct timespec start_time;         /* monotonic time */  
struct timespec real_start_time;    /* boot based time */  
struct task_cputime cputime_expires;  
struct list_head cpu_timers[3];  
#ifdef CONFIG_DETECT_HUNG_TASK  
/* hung task detection */  
long last_switch_count;  
#endif

    utime/stime用于记录进程在用户态/内核态下所经过的节拍数(定时器)。

    utimescaled/stimescaled也是用于记录进程在用户态/内核态的运行时间,但它们以处理器的频率为刻度。
    gtime是以节拍计数的虚拟机运行时间(guest time)。
    nvcsw/nivcsw是自愿(voluntary)/非自愿(involuntary)上下文切换计数。last_switch_count是nvcsw和nivcsw的总和。
    start_time和real_start_time都是进程创建时间,real_start_time还包含了进程睡眠时间,常用于/proc/pid/stat,补丁说明请参考http://lkml.indiana.edu/hypermail/linux/kernel/0705.0/2094.html
    cputime_expires用来统计进程或进程组被跟踪的处理器时间,其中的三个成员对应着cpu_timers[3]的三个链表。
    12、信号处理 

/* signal handlers */  
struct signal_struct *signal;  
struct sighand_struct *sighand;  
  
    sigset_t blocked, real_blocked;  
/* restored if set_restore_sigmask() was used */  
struct sigpending pending;  
  
long sas_ss_sp;  
size_t sas_ss_size;  
int (*notifier)(void *priv);  
void *notifier_data;  
    sigset_t *notifier_mask;

    signal指向进程的信号描述符。

    sighand指向进程的信号处理程序描述符。

    blocked表示被阻塞信号的掩码,real_blocked表示临时掩码。

    pending存放私有挂起信号的数据结构。

    sas_ss_sp是信号处理程序备用堆栈的地址,sas_ss_size表示堆栈的大小。

    设备驱动程序常用notifier指向的函数来阻塞进程的某些信号(notifier_mask是这些信号的位掩码),notifier_data指的是notifier所指向的函数可能使用的数据。

    13、其他

    (1)、用于保护资源分配或释放的自旋锁 

/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 
 * mempolicy */  
    spinlock_t alloc_lock;

    (2)、进程描述符使用计数,被置为2时,表示进程描述符正在被使用而且其相应的进程处于活动状态。 

atomic_t usage;

    (3)、用于表示获取大内核锁的次数,如果进程未获得过锁,则置为-1。 

int lock_depth;     /* BKL lock depth */

    (4)、在SMP上帮助实现无加锁的进程切换(unlocked context switches) 

#ifdef CONFIG_SMP  
#ifdef __ARCH_WANT_UNLOCKED_CTXSW  
int oncpu;  
#endif  
#endif

    (5)、preempt_notifier结构体链表 

#ifdef CONFIG_PREEMPT_NOTIFIERS  
/* list of struct preempt_notifier: */  
struct hlist_head preempt_notifiers;  
#endif

    (6)、FPU使用计数 

unsigned char fpu_counter;

    (7)、blktrace是一个针对Linux内核中块设备I/O层的跟踪工具。 

#ifdef CONFIG_BLK_DEV_IO_TRACE  
int btrace_seq;  
#endif

    (8)、RCU同步原语 

#ifdef CONFIG_PREEMPT_RCU  
int rcu_read_lock_nesting;  
char rcu_read_unlock_special;  
struct list_head rcu_node_entry;  
#endif /* #ifdef CONFIG_PREEMPT_RCU */  
#ifdef CONFIG_TREE_PREEMPT_RCU  
struct rcu_node *rcu_blocked_node;  
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */  
#ifdef CONFIG_RCU_BOOST  
struct rt_mutex *rcu_boost_mutex;  
#endif /* #ifdef CONFIG_RCU_BOOST */

    (9)、用于调度器统计进程的运行信息 

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)  
struct sched_info sched_info;  
#endif

    (10)、用于构建进程链表 

struct list_head tasks;

    (11)、to limit pushing to one attempt 

 
        
#ifdef CONFIG_SMP  
struct plist_node pushable_tasks;  
#endif

    补丁说明请参考:http://lkml.indiana.edu/hypermail/linux/kernel/0808.3/0503.html

    (12)、防止内核堆栈溢出 

#ifdef CONFIG_CC_STACKPROTECTOR  
/* Canary value for the -fstack-protector gcc feature */  
long stack_canary;  
#endif

    在GCC编译内核时,需要加上-fstack-protector选项。

    (13)、PID散列表和链表 

 
        
/* PID/PID hash table linkage. */  
struct pid_link pids[PIDTYPE_MAX];  
struct list_head thread_group; //线程组中所有进程的链表

    (14)、do_fork函数 

 
        
struct completion *vfork_done;      /* for vfork() */  
int __user *set_child_tid;      /* CLONE_CHILD_SETTID */  
int __user *clear_child_tid;        /* CLONE_CHILD_CLEARTID */

    在执行do_fork()时,如果给定特别标志,则vfork_done会指向一个特殊地址。

    如果copy_process函数的clone_flags参数的值被置为CLONE_CHILD_SETTID或 CLONE_CHILD_CLEARTID,则会把child_tidptr参数的值分别复制到set_child_tid和 clear_child_tid成员。这些标志说明必须改变子进程用户态地址空间的child_tidptr所指向的变量的值。

    (15)、缺页统计 

/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */  
long min_flt, maj_flt;

    (16)、进程权能 

const struct cred __rcu *real_cred; /* objective and real subjective task 
                 * credentials (COW) */  
const struct cred __rcu *cred;  /* effective (overridable) subjective task 
                 * credentials (COW) */  
struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */

    (17)、相应的程序名 

char comm[TASK_COMM_LEN];

    (18)、文件 

/* file system info */  
int link_count, total_link_count;  
/* filesystem information */  
struct fs_struct *fs;  
/* open file information */  
struct files_struct *files;

    fs用来表示进程与文件系统的联系,包括当前目录和根目录。

    files表示进程当前打开的文件。

    (19)、进程通信(SYSVIPC) 

#ifdef CONFIG_SYSVIPC  
/* ipc stuff */  
struct sysv_sem sysvsem;  
#endif

    (20)、处理器特有数据 

/* CPU-specific state of this task */  
struct thread_struct thread;

    (21)、命名空间 

/* namespaces */  
struct nsproxy *nsproxy;

    (22)、进程审计 

struct audit_context *audit_context;  
#ifdef CONFIG_AUDITSYSCALL  
    uid_t loginuid;  
int sessionid;  
#endif

    (23)、secure computing 

seccomp_t seccomp;

    (24)、用于copy_process函数使用CLONE_PARENT 标记时 

/* Thread group tracking */  
    u32 parent_exec_id;  
    u32 self_exec_id;

    (25)、中断 

#ifdef CONFIG_GENERIC_HARDIRQS  
/* IRQ handler threads */  
struct irqaction *irqaction;  
#endif  
#ifdef CONFIG_TRACE_IRQFLAGS  
int irq_events;  
long hardirq_enable_ip;  
long hardirq_disable_ip;  
int hardirq_enable_event;  
int hardirq_disable_event;  
int hardirqs_enabled;  
int hardirq_context;  
long softirq_disable_ip;  
long softirq_enable_ip;  
int softirq_disable_event;  
int softirq_enable_event;  
int softirqs_enabled;  
int softirq_context;  
#endif

    (26)、task_rq_lock函数所使用的锁 

/* Protection of the PI data structures: */  
raw_spinlock_t pi_lock;

    (27)、基于PI协议的等待互斥锁,其中PI指的是priority inheritance(优先级继承) 

#ifdef CONFIG_RT_MUTEXES  
/* PI waiters blocked on a rt_mutex held by this task */  
struct plist_head pi_waiters;  
/* Deadlock detection and priority inheritance handling */  
struct rt_mutex_waiter *pi_blocked_on;  
#endif

    (28)、死锁检测 

#ifdef CONFIG_DEBUG_MUTEXES  
/* mutex deadlock detection */  
struct mutex_waiter *blocked_on;  
#endif

    (29)、lockdep,参见内核说明文档linux-2.6.38.8/Documentation/lockdep-design.txt 

#ifdef CONFIG_LOCKDEP  
# define MAX_LOCK_DEPTH 48UL  
    u64 curr_chain_key;  
int lockdep_depth;  
int lockdep_recursion;  
struct held_lock held_locks[MAX_LOCK_DEPTH];  
    gfp_t lockdep_reclaim_gfp;  
#endif

    (30)、JFS文件系统 

/* journalling filesystem info */  
void *journal_info;

    (31)、块设备链表 

/* stacked block device info */  
struct bio_list *bio_list;

    (32)、内存回收 

struct reclaim_state *reclaim_state;

    (33)、存放块设备I/O数据流量信息

struct backing_dev_info *backing_dev_info;

    (34)、I/O调度器所使用的信息 

struct io_context *io_context;

    (35)、记录进程的I/O计数 

struct task_io_accounting ioac;  
if defined(CONFIG_TASK_XACCT)  
u64 acct_rss_mem1;  /* accumulated rss usage */  
u64 acct_vm_mem1;   /* accumulated virtual memory usage */  
cputime_t acct_timexpd; /* stime + utime since last update */  
endif

    在Ubuntu 11.04上,执行cat获得进程1的I/O计数如下: 

$ sudo cat /proc/1/io

rchar: 164258906  
wchar: 455212837  
syscr: 388847  
syscw: 92563  
read_bytes: 439251968  
write_bytes: 14143488  
cancelled_write_bytes: 2134016

    输出的数据项刚好是task_io_accounting结构体的所有成员。

    (36)、CPUSET功能 

#ifdef CONFIG_CPUSETS  
/* Protected by alloc_lock */  
int mems_allowed_change_disable;  
int cpuset_mem_spread_rotor;  
int cpuset_slab_spread_rotor;  
#endif

    (37)、Control Groups 

#ifdef CONFIG_CGROUPS  
/* Control Group info protected by css_set_lock */  
struct css_set __rcu *cgroups;  
/* cg_list protected by css_set_lock and tsk->alloc_lock */  
struct list_head cg_list;  
#endif  
#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */  
struct memcg_batch_info {  
int do_batch;   /* incremented when batch uncharge started */  
struct mem_cgroup *memcg; /* target memcg of uncharge */  
long bytes;        /* uncharged usage */  
long memsw_bytes; /* uncharged mem+swap usage */  
    } memcg_batch;  
#endif

    (38)、futex同步机制 

#ifdef CONFIG_FUTEX  
struct robust_list_head __user *robust_list;  
#ifdef CONFIG_COMPAT  
struct compat_robust_list_head __user *compat_robust_list;  
#endif  
struct list_head pi_state_list;  
struct futex_pi_state *pi_state_cache;  
#endif

    (39)、非一致内存访问(NUMA  Non-Uniform Memory Access) 

#ifdef CONFIG_NUMA  
struct mempolicy *mempolicy;    /* Protected by alloc_lock */  
short il_next;  
#endif

    (40)、文件系统互斥资源 

atomic_t fs_excl;   /* holding fs exclusive resources */

    (41)、RCU链表 

struct rcu_head rcu;

    (42)、管道 

struct pipe_inode_info *splice_pipe;

    (43)、延迟计数 

#ifdef  CONFIG_TASK_DELAY_ACCT  
struct task_delay_info *delays;  
#endif

    (44)、fault injection,参考内核说明文件linux-2.6.38.8/Documentation/fault-injection/fault-injection.txt 

#ifdef CONFIG_FAULT_INJECTION  
int make_it_fail;  
#endif

    (45)、FLoating proportions 

struct prop_local_single dirties;

    (46)、Infrastructure for displayinglatency 

#ifdef CONFIG_LATENCYTOP  
int latency_record_count;  
struct latency_record latency_record[LT_SAVECOUNT];  
#endif

    (47)、time slack values,常用于poll和select函数 

unsigned long timer_slack_ns;  
unsigned long default_timer_slack_ns;

 

(48)、socket控制消息(control message)

struct list_head    *scm_work_list;

    (49)、ftrace跟踪器 

#ifdef CONFIG_FUNCTION_GRAPH_TRACER  
/* Index of current stored address in ret_stack */  
int curr_ret_stack;  
/* Stack of return addresses for return function tracing */  
struct ftrace_ret_stack *ret_stack;  
/* time stamp for last schedule */  
long long ftrace_timestamp;  
/* 
     * Number of functions that haven't been traced 
     * because of depth overrun. 
     */  
    atomic_t trace_overrun;  
/* Pause for the tracing */  
    atomic_t tracing_graph_pause;  
#endif  
#ifdef CONFIG_TRACING  
/* state flags for use by tracers */  
long trace;  
/* bitmask of trace recursion */  
long trace_recursion;  
#endif /* CONFIG_TRACING */

  9、进程地址空间 

struct mm_struct *mm, *active_mm;  
#ifdef CONFIG_COMPAT_BRK  
    unsigned brk_randomized:1;  
#endif  
#if defined(SPLIT_RSS_COUNTING)  
struct task_rss_stat    rss_stat;  
#endif

    mm指向进程所拥有的内存描述符,而active_mm指向进程运行时所使用的内存描述符。对于普通进程而言,这两个指针变量的值相同。但是,内核线程不拥有任何内存描述符,所以它们的mm成员总是为NULL。当内核线程得以运行时,它的active_mm成员被初始化为前一个运行进程的 active_mm值。

    brk_randomized的用法在http://lkml.indiana.edu/hypermail/linux/kernel/1104.1/00196.html上有介绍,用来确定对随机堆内存的探测。

    rss_stat用来记录缓冲信息。 

    10、判断标志 

int exit_code, exit_signal;  
int pdeath_signal;  /*  The signal sent when the parent dies  */  
/* ??? */  
unsigned int personality;  
unsigned did_exec:1;  
unsigned in_execve:1;   /* Tell the LSMs that the process is doing an 
             * execve */  
unsigned in_iowait:1;  
  
  
/* Revert to default priority/policy when forking */  
unsigned sched_reset_on_fork:1;

    exit_code用于设置进程的终止代号,这个值要么是_exit()或exit_group()系统调用参数(正常终止),要么是由内核提供的一个错误代号(异常终止)。

    exit_signal被置为-1时表示是某个线程组中的一员。只有当线程组的最后一个成员终止时,才会产生一个信号,以通知线程组的领头进程的父进程。

    pdeath_signal用于判断父进程终止时发送信号。

    personality用于处理不同的ABI,它的可能取值如下: 

enum {  
    PER_LINUX =     0x0000,  
    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,  
    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,  
    PER_SVR4 =      0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,  
    PER_SVR3 =      0x0002 | STICKY_TIMEOUTS | SHORT_INODE,  
    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS |  
                     WHOLE_SECONDS | SHORT_INODE,  
    PER_OSR5 =      0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,  
    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,  
    PER_ISCR4 =     0x0005 | STICKY_TIMEOUTS,  
    PER_BSD =       0x0006,  
    PER_SUNOS =     0x0006 | STICKY_TIMEOUTS,  
    PER_XENIX =     0x0007 | STICKY_TIMEOUTS | SHORT_INODE,  
    PER_LINUX32 =       0x0008,  
    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,  
/* IRIX5 32-bit */  
/* IRIX6 new 32-bit */  
/* IRIX6 64-bit */  
    PER_RISCOS =        0x000c,  
    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,  
    PER_UW7 =       0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,  
/* OSF/1 v4 */  
    PER_HPUX =      0x0010,  
    PER_MASK =      0x00ff,  
};

    did_exec用于记录进程代码是否被execve()函数所执行。

    in_execve用于通知LSM是否被do_execve()函数所调用。详见补丁说明:http://lkml.indiana.edu/hypermail/linux/kernel/0901.1/00014.html

    in_iowait用于判断是否进行iowait计数。

    sched_reset_on_fork用于判断是否恢复默认的优先级或调度策略。

    11、时间 

cputime_t utime, stime, utimescaled, stimescaled;  
    cputime_t gtime;  
#ifndef CONFIG_VIRT_CPU_ACCOUNTING  
    cputime_t prev_utime, prev_stime;  
#endif  
long nvcsw, nivcsw; /* context switch counts */  
struct timespec start_time;         /* monotonic time */  
struct timespec real_start_time;    /* boot based time */  
struct task_cputime cputime_expires;  
struct list_head cpu_timers[3];  
#ifdef CONFIG_DETECT_HUNG_TASK  
/* hung task detection */  
long last_switch_count;  
#endif

    utime/stime用于记录进程在用户态/内核态下所经过的节拍数(定时器)。prev_utime/prev_stime是先前的运行时间,请参考补丁说明http://lkml.indiana.edu/hypermail/linux/kernel/1003.3/02431.html

    utimescaled/stimescaled也是用于记录进程在用户态/内核态的运行时间,但它们以处理器的频率为刻度。

    gtime是以节拍计数的虚拟机运行时间(guest time)。

    nvcsw/nivcsw是自愿(voluntary)/非自愿(involuntary)上下文切换计数。last_switch_count是nvcsw和nivcsw的总和。

    start_time和real_start_time都是进程创建时间,real_start_time还包含了进程睡眠时间,常用于/proc/pid/stat,补丁说明请参考http://lkml.indiana.edu/hypermail/linux/kernel/0705.0/2094.html

    cputime_expires用来统计进程或进程组被跟踪的处理器时间,其中的三个成员对应着cpu_timers[3]的三个链表。

    12、信号处理 

/* signal handlers */  
struct signal_struct *signal;  
struct sighand_struct *sighand;  
  
    sigset_t blocked, real_blocked;  
/* restored if set_restore_sigmask() was used */  
struct sigpending pending;  
  
long sas_ss_sp;  
size_t sas_ss_size;  
int (*notifier)(void *priv);  
void *notifier_data;  
    sigset_t *notifier_mask;

    signal指向进程的信号描述符。

    sighand指向进程的信号处理程序描述符。

    blocked表示被阻塞信号的掩码,real_blocked表示临时掩码。

    pending存放私有挂起信号的数据结构。

    sas_ss_sp是信号处理程序备用堆栈的地址,sas_ss_size表示堆栈的大小。

    设备驱动程序常用notifier指向的函数来阻塞进程的某些信号(notifier_mask是这些信号的位掩码),notifier_data指的是notifier所指向的函数可能使用的数据。

    13、其他

    (1)、用于保护资源分配或释放的自旋锁 

/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 
 * mempolicy */  
    spinlock_t alloc_lock;

    (2)、进程描述符使用计数,被置为2时,表示进程描述符正在被使用而且其相应的进程处于活动状态。 

atomic_t usage;

    (3)、用于表示获取大内核锁的次数,如果进程未获得过锁,则置为-1。 

int lock_depth;     /* BKL lock depth */

    (4)、在SMP上帮助实现无加锁的进程切换(unlocked context switches) 

#ifdef CONFIG_SMP  
#ifdef __ARCH_WANT_UNLOCKED_CTXSW  
int oncpu;  
#endif  
#endif

    (5)、preempt_notifier结构体链表 

#ifdef CONFIG_PREEMPT_NOTIFIERS  
/* list of struct preempt_notifier: */  
struct hlist_head preempt_notifiers;  
#endif

    (6)、FPU使用计数 

unsigned char fpu_counter;

    (7)、blktrace是一个针对Linux内核中块设备I/O层的跟踪工具。 

#ifdef CONFIG_BLK_DEV_IO_TRACE  
int btrace_seq;  
#endif

    (8)、RCU同步原语 

#ifdef CONFIG_PREEMPT_RCU  
int rcu_read_lock_nesting;  
char rcu_read_unlock_special;  
struct list_head rcu_node_entry;  
#endif /* #ifdef CONFIG_PREEMPT_RCU */  
#ifdef CONFIG_TREE_PREEMPT_RCU  
struct rcu_node *rcu_blocked_node;  
#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */  
#ifdef CONFIG_RCU_BOOST  
struct rt_mutex *rcu_boost_mutex;  
#endif /* #ifdef CONFIG_RCU_BOOST */

    (9)、用于调度器统计进程的运行信息 

#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)  
struct sched_info sched_info;  
#endif

    (10)、用于构建进程链表 

struct list_head tasks;

    (11)、to limit pushing to one attempt 

#ifdef CONFIG_SMP  
struct plist_node pushable_tasks;  
#endif

    补丁说明请参考:http://lkml.indiana.edu/hypermail/linux/kernel/0808.3/0503.html

    (12)、防止内核堆栈溢出 

#ifdef CONFIG_CC_STACKPROTECTOR  
/* Canary value for the -fstack-protector gcc feature */  
long stack_canary;  
#endif

    在GCC编译内核时,需要加上-fstack-protector选项。

    (13)、PID散列表和链表 

/* PID/PID hash table linkage. */  
struct pid_link pids[PIDTYPE_MAX];  
struct list_head thread_group; //线程组中所有进程的链表

    (14)、do_fork函数 

struct completion *vfork_done;      /* for vfork() */  
int __user *set_child_tid;      /* CLONE_CHILD_SETTID */  
int __user *clear_child_tid;        /* CLONE_CHILD_CLEARTID */

    在执行do_fork()时,如果给定特别标志,则vfork_done会指向一个特殊地址。

    如果copy_process函数的clone_flags参数的值被置为CLONE_CHILD_SETTID或 CLONE_CHILD_CLEARTID,则会把child_tidptr参数的值分别复制到set_child_tid和 clear_child_tid成员。这些标志说明必须改变子进程用户态地址空间的child_tidptr所指向的变量的值。

    (15)、缺页统计 

/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */  
long min_flt, maj_flt;

    (16)、进程权能 

const struct cred __rcu *real_cred; /* objective and real subjective task 
                 * credentials (COW) */  
const struct cred __rcu *cred;  /* effective (overridable) subjective task 
                 * credentials (COW) */  
struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */

    (17)、相应的程序名 

char comm[TASK_COMM_LEN];

    (18)、文件 

/* file system info */  
int link_count, total_link_count;  
/* filesystem information */  
struct fs_struct *fs;  
/* open file information */  
struct files_struct *files;

    fs用来表示进程与文件系统的联系,包括当前目录和根目录。

    files表示进程当前打开的文件。

    (19)、进程通信(SYSVIPC) 

#ifdef CONFIG_SYSVIPC  
/* ipc stuff */  
struct sysv_sem sysvsem;  
#endif

    (20)、处理器特有数据 

/* CPU-specific state of this task */  
struct thread_struct thread;

    (21)、命名空间 

/* namespaces */  
struct nsproxy *nsproxy;

    (22)、进程审计 

struct audit_context *audit_context;  
#ifdef CONFIG_AUDITSYSCALL  
    uid_t loginuid;  
int sessionid;  
#endif

    (23)、secure computing 

seccomp_t seccomp;

    (24)、用于copy_process函数使用CLONE_PARENT 标记时 

/* Thread group tracking */  
    u32 parent_exec_id;  
    u32 self_exec_id;

    (25)、中断 

#ifdef CONFIG_GENERIC_HARDIRQS  
/* IRQ handler threads */  
struct irqaction *irqaction;  
#endif  
#ifdef CONFIG_TRACE_IRQFLAGS  
int irq_events;  
long hardirq_enable_ip;  
long hardirq_disable_ip;  
int hardirq_enable_event;  
int hardirq_disable_event;  
int hardirqs_enabled;  
int hardirq_context;  
long softirq_disable_ip;  
long softirq_enable_ip;  
int softirq_disable_event;  
int softirq_enable_event;  
int softirqs_enabled;  
int softirq_context;  
#endif

    (26)、task_rq_lock函数所使用的锁 

/* Protection of the PI data structures: */  
raw_spinlock_t pi_lock;

    (27)、基于PI协议的等待互斥锁,其中PI指的是priority inheritance(优先级继承) 

#ifdef CONFIG_RT_MUTEXES  
/* PI waiters blocked on a rt_mutex held by this task */  
struct plist_head pi_waiters;  
/* Deadlock detection and priority inheritance handling */  
struct rt_mutex_waiter *pi_blocked_on;  
#endif

    (28)、死锁检测 

#ifdef CONFIG_DEBUG_MUTEXES  
/* mutex deadlock detection */  
struct mutex_waiter *blocked_on;  
#endif

    (29)、lockdep,参见内核说明文档linux-2.6.38.8/Documentation/lockdep-design.txt 

#ifdef CONFIG_LOCKDEP  
# define MAX_LOCK_DEPTH 48UL  
    u64 curr_chain_key;  
int lockdep_depth;  
int lockdep_recursion;  
struct held_lock held_locks[MAX_LOCK_DEPTH];  
    gfp_t lockdep_reclaim_gfp;  
#endif

    (30)、JFS文件系统 

/* journalling filesystem info */  
void *journal_info;

    (31)、块设备链表 

/* stacked block device info */  
struct bio_list *bio_list;

    (32)、内存回收 

struct reclaim_state *reclaim_state;

    (33)、存放块设备I/O数据流量信息

struct backing_dev_info *backing_dev_info;

    (34)、I/O调度器所使用的信息 

struct io_context *io_context;

    (35)、记录进程的I/O计数 

struct task_io_accounting ioac;  
if defined(CONFIG_TASK_XACCT)  
u64 acct_rss_mem1;  /* accumulated rss usage */  
u64 acct_vm_mem1;   /* accumulated virtual memory usage */  
cputime_t acct_timexpd; /* stime + utime since last update */  
endif

    在Ubuntu 11.04上,执行cat获得进程1的I/O计数如下: 

$ sudo cat /proc/1/io

rchar: 164258906  
wchar: 455212837  
syscr: 388847  
syscw: 92563  
read_bytes: 439251968  
write_bytes: 14143488  
cancelled_write_bytes: 2134016

    输出的数据项刚好是task_io_accounting结构体的所有成员。

    (36)、CPUSET功能 

#ifdef CONFIG_CPUSETS  
/* Protected by alloc_lock */  
int mems_allowed_change_disable;  
int cpuset_mem_spread_rotor;  
int cpuset_slab_spread_rotor;  
#endif

    (37)、Control Groups 

#ifdef CONFIG_CGROUPS  
/* Control Group info protected by css_set_lock */  
struct css_set __rcu *cgroups;  
/* cg_list protected by css_set_lock and tsk->alloc_lock */  
struct list_head cg_list;  
#endif  
#ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */  
struct memcg_batch_info {  
int do_batch;   /* incremented when batch uncharge started */  
struct mem_cgroup *memcg; /* target memcg of uncharge */  
long bytes;        /* uncharged usage */  
long memsw_bytes; /* uncharged mem+swap usage */  
    } memcg_batch;  
#endif

    (38)、futex同步机制 

#ifdef CONFIG_FUTEX  
struct robust_list_head __user *robust_list;  
#ifdef CONFIG_COMPAT  
struct compat_robust_list_head __user *compat_robust_list;  
#endif  
struct list_head pi_state_list;  
struct futex_pi_state *pi_state_cache;  
#endif

    (39)、非一致内存访问(NUMA  Non-Uniform Memory Access) 

#ifdef CONFIG_NUMA  
struct mempolicy *mempolicy;    /* Protected by alloc_lock */  
short il_next;  
#endif

    (40)、文件系统互斥资源 

atomic_t fs_excl;   /* holding fs exclusive resources */

    (41)、RCU链表 

struct rcu_head rcu;

    (42)、管道 

struct pipe_inode_info *splice_pipe;

    (43)、延迟计数 

#ifdef  CONFIG_TASK_DELAY_ACCT  
struct task_delay_info *delays;  
#endif

    (44)、fault injection,参考内核说明文件linux-2.6.38.8/Documentation/fault-injection/fault-injection.txt 

#ifdef CONFIG_FAULT_INJECTION  
int make_it_fail;  
#endif

    (45)、FLoating proportions 

struct prop_local_single dirties;

    (46)、Infrastructure for displayinglatency 

#ifdef CONFIG_LATENCYTOP  
int latency_record_count;  
struct latency_record latency_record[LT_SAVECOUNT];  
#endif

    (47)、time slack values,常用于poll和select函数 

unsigned long timer_slack_ns;  
unsigned long default_timer_slack_ns;

    (48)、socket控制消息(control message) 

struct list_head    *scm_work_list;

    (49)、ftrace跟踪器 

#ifdef CONFIG_FUNCTION_GRAPH_TRACER  
/* Index of current stored address in ret_stack */  
int curr_ret_stack;  
/* Stack of return addresses for return function tracing */  
struct ftrace_ret_stack *ret_stack;  
/* time stamp for last schedule */  
long long ftrace_timestamp;  
/* 
     * Number of functions that haven't been traced 
     * because of depth overrun. 
     */  
    atomic_t trace_overrun;  
/* Pause for the tracing */  
    atomic_t tracing_graph_pause;  
#endif  
#ifdef CONFIG_TRACING  
/* state flags for use by tracers */  
long trace;  
/* bitmask of trace recursion */  
long trace_recursion;  
#endif /* CONFIG_TRACING */