1. 背景介绍

在为重写hashCode方法的时候, 看到hashCode打印出的数据像是一个地址值, 很是好奇. 加之最近在研读jvm源码, 特此一探究竟, 看看在hotspot中hashCode究竟是如何实现的

2. 调用过程梳理

1. java的Object代码

public native int hashCode();

通过官产jdk的Object.class的源码, 发现hashCode被native修饰. 因此这个方法应该是在jvm中通过c/c++实现

2. jvm的hashCode相关代码

  1. 首先观察Object.java对应的Object.c代码
// 文件路径: jdk\src\share\native\java\lang\Object.c
static JNINativeMethod methods[] = {
    {"hashCode",    "()I",                    (void *)&JVM_IHashCode}, // 这个方法就是我们想看的hashCode方法
    {"wait",        "(J)V",                   (void *)&JVM_MonitorWait},
    {"notify",      "()V",                    (void *)&JVM_MonitorNotify},
    {"notifyAll",   "()V",                    (void *)&JVM_MonitorNotifyAll},
    {"clone",       "()Ljava/lang/Object;",   (void *)&JVM_Clone},
};
  1. 进一步进入到jvm.h文件中, 这个文件中包含了很多java调用native方法的接口
// hotspot\src\share\vm\prims\jvm.h
/*
 * java.lang.Object
 */
JNIEXPORT jint JNICALL
JVM_IHashCode(JNIEnv *env, jobject obj); // 此时定了已hashCode方法的接口, 具体实现在jvm.cpp中
// hotspot\src\share\vm\prims\jvm.cpp
// java.lang.Object ///

JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
  JVMWrapper("JVM_IHashCode");
  // as implemented in the classic virtual machine; return 0 if object is NULL
  return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ; // 如果object为null, 就返回0; 否则就调用ObjectSynchronizer::FastHashCode
JVM_END
  1. 进入到ObjectSynchronizer::FastHashCode
// hotspot\src\share\vm\runtime\synchronizer.cpp
intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
// ....
	// 在FastHashCode方法中有一段关键代码:
	if (mark->is_neutral()) {
	    hash = mark->hash();              // 首先通过对象的markword中取出hashCode
	    if (hash) {                       // 如果取调到了, 就直接返回
	      return hash;
	    }
	    hash = get_next_hash(Self, obj);  // 如果markword中没有设置hashCode, 则调用get_next_hash生成hashCode
	    temp = mark->copy_set_hash(hash); // 生成的hashCode设置到markword中
	    // use (machine word version) atomic operation to install the hash
	    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
	    if (test == mark) {
	      return hash;
	    }
	}
// ....
}
  1. 生成hashCode的方法get_next_hash, 可以支持通过参数配置不同的生成hashCode策略
// hotspot\src\share\vm\runtime\synchronizer.cpp
static inline intptr_t get_next_hash(Thread * Self, oop obj) {
  intptr_t value = 0 ;
  // 一共支持6中生成hashCode策略, 默认策略值是5
  if (hashCode == 0) {
  // 策略1: 直接通过随机数生成
     value = os::random() ;
  } else if (hashCode == 1) {
     // 策略2: 通过object地址和随机数运算生成
     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3 ;
     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
  } else if (hashCode == 2) {
  // 策略3: 永远返回1, 用于测试
     value = 1 ;            // for sensitivity testing
  } else if (hashCode == 3) {
  // 策略4: 返回一个全局递增的序列数
     value = ++GVars.hcSequence ;
  } else if (hashCode == 4) {
  // 策略5: 直接采用object的地址值
     value = cast_from_oop<intptr_t>(obj) ;
  } else {
     // 策略6: 通过在每个线程中的四个变量: _hashStateX, _hashStateY, _hashStateZ, _hashStateW
     // 组合运算出hashCode值, 根据计算结果同步修改这个四个值
     unsigned t = Self->_hashStateX ;
     t ^= (t << 11) ;
     Self->_hashStateX = Self->_hashStateY ;
     Self->_hashStateY = Self->_hashStateZ ;
     Self->_hashStateZ = Self->_hashStateW ;
     unsigned v = Self->_hashStateW ;
     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
     Self->_hashStateW = v ;
     value = v ;
  }

  value &= markOopDesc::hash_mask; // 通过hashCode的mask获得最终的hashCode值
  if (value == 0) value = 0xBAD ;
  assert (value != markOopDesc::no_hash, "invariant") ;
  TEVENT (hashCode: GENERATE) ;
  return value;
}

3. 关于hashCode值的大小

前面以及提交到hashCode生成后, 是存储在markword中, 我们在深入看一下这个markword

// hotspot\src\share\vm\oops\markOop.hpp
class markOopDesc: public oopDesc {
 private:
  // Conversion
  uintptr_t value() const { return (uintptr_t) this; }

 public:
  // Constants
  enum { age_bits                 = 4,
         lock_bits                = 2,
         biased_lock_bits         = 1,
         max_hash_bits            = BitsPerWord - age_bits - lock_bits - biased_lock_bits,
         hash_bits                = max_hash_bits > 31 ? 31 : max_hash_bits, // 通过这个定义可知, hashcode可占用31位bit. 在32位jvm中,  hashCode占用25位
         cms_bits                 = LP64_ONLY(1) NOT_LP64(0),
         epoch_bits               = 2
  };
  
}

4. 验证

package test;

/***
 * 可以通过系列参数指定hashCode生成策略
 * -XX:hashCode=2
 */
public class TestHashCode {

    public static void main(String[] args) {
        Object obj1 = new Object();
        Object obj2 = new Object();
        System.out.println(obj1.hashCode());
        System.out.println(obj2.hashCode());

    }
}

通过-XX:hashCode=2这种形式, 可以验证上述的5中hashCode生成策略

5. 总结

  1. 在64位jvm中, hashCode最大占用31个bit; 32位jvm中, hashCode最大占用25个bit
  2. hashCode一共有六种生成策略

序号

hashCode策略值

描述

1

0

直接通过随机数生成

2

1

通过object地址和随机数运算生成

3

2

永远返回1, 用于测试

4

3

返回一个全局递增的序列数

5

4

直接采用object的地址值

6

其他

通过在每个线程中的四个变量: _hashStateX, _hashStateY, _hashStateZ, _hashStateW 组合运算出hashCode值, 根据计算结果后修改这个四个值

  1. 默认策略采用策略6, 在globals.hpp文件中定义
product(intx, hashCode, 5,                                                \
          "(Unstable) select hashCode generation algorithm")