环境 flink1.7.2

  1. 增加flink1.7.2 的lib 中的jar, 否则会报类找不到
avro-1.8.2.jar            
flink-connector-kafka-0.10_2.12-1.7.2.jar  
flink-connector-kafka-base_2.12-1.7.2.jar  
flink-json-1.7.2.jar         
kafka-clients-0.11.0.0.jar
flink-avro-1.7.2.jar      
flink-connector-kafka-0.11_2.12-1.7.2.jar  
flink-core-1.7.2.jar                       
flink-python_2.12-1.7.2.jar  log4j-1.2.17.jar
flink-cep_2.12-1.7.2.jar  
flink-connector-kafka-0.9_2.12-1.7.2.jar   
flink-dist_2.12-1.7.2.jar                  
flink-table_2.12-1.7.2.jar   
slf4j-log4j12-1.7.15.jar
  1. 修改 sql-client-defaults.yaml 中的table 值
tables:
  - name: myTable
    type: source
    update-mode: append
    connector:
      property-version: 1
      type: kafka
      version: 0.11
      topic: im-message-topic2
      startup-mode: earliest-offset
      properties:
        - key: bootstrap.servers
          value: kafkaip:9092
        - key: group.id
          value: testGroup
    format:
      property-version: 1
      type: json
      schema: "ROW(sessionId STRING, fromUid STRING, toUid STRING, chatType STRING, type STRING,msgId STRING, msg STRING, timestampSend STRING)"
    schema:
      - name: sessionId
        type: STRING
      - name: fromUid
        type: STRING
      - name: toUid
        type: STRING		
	  - name: chatType
        type: STRING
      - name: type
        type: STRING
      - name: msgId
        type: STRING
	  - name: msg
        type: STRING			
      - name: rowTime
        type: TIMESTAMP
        rowtime:
          timestamps:
            type: "from-field"
            from: "timestampSend"
          watermarks:
            type: "periodic-bounded"
            delay: "60"
      - name: procTime
        type: TIMESTAMP
        proctime: true
  1. 运行
./bin/sql-client.sh embedded
 select * from myTable;

然后使用 MATCH_RECOGNIZE 的sql

SELECT  *   FROM myTable    MATCH_RECOGNIZE 
(   PARTITION BY sessionId   ORDER BY rowTime   MEASURES  
 e2.procTime as answerTime,  LAST(e1.procTime) as customer_event_time,  
 e2.fromUid as empUid,    
 e1.procTime as askTime,                       
 1 as total_talk           
 ONE ROW PER MATCH   AFTER MATCH SKIP TO LAST e2   
 PATTERN (e1 e2)   DEFINE   e1 as e1.type = 'yonghu',    
 e2 as e2.type = 'guanjia'   );

上面是使用sql-client 不用谢代码,当然也可以写代码,下面是对应的程序

public static void main(String[] arg) throws Exception {
		
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		StreamTableEnvironment  tableEnv = TableEnvironment.getTableEnvironment(env);
		
		env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
		
		tableEnv.connect(new Kafka()
	                .version("0.11")
	                .topic("im-message-topic3")
	                //.property("zookeeper.connect","")
	                .property("bootstrap.servers","kafkaip:9092")
	                .startFromEarliest()
	                .sinkPartitionerRoundRobin()//Flink分区随机映射到kafka分区


	        ).withFormat(new Json()
	                .failOnMissingField(false)
	                .deriveSchema()

	        ).withSchema(new Schema()
	                .field("sessionId", Types.STRING).from("sessionId")
	                .field("fromUid", Types.STRING).from("fromUid")
	                .field("toUid", Types.STRING).from("toUid")
	                .field("chatType", Types.STRING).from("chatType")
	                .field("type", Types.STRING).from("type")
	                .field("msgId", Types.STRING).from("msgId")
	                .field("msg", Types.STRING).from("msg")
//	                .field("timestampSend", Types.SQL_TIMESTAMP)
	                .field("rowtime", Types.SQL_TIMESTAMP)
	                .rowtime(new Rowtime()
	                        .timestampsFromField("timestampSend")
	                        .watermarksPeriodicBounded(1000)
	                )
	                .field("proctime", Types.SQL_TIMESTAMP).proctime()
	        ).inAppendMode().registerTableSource("myTable");
		
		
		
			
        
		
        Table tb2 = tableEnv.sqlQuery(
                "SELECT " +
                        "answerTime, customer_event_time, empUid, noreply_counts, total_talk " +
                        "FROM myTable" +
                        " " +
                        "MATCH_RECOGNIZE ( " +
                        "PARTITION BY sessionId " +
                        "ORDER BY rowtime " +
                        "MEASURES " +
                        "e2.rowtime as answerTime, "+
                        "LAST(e1.rowtime) as customer_event_time, " +
                        "e2.fromUid as empUid, " +
                        "1 as noreply_counts, " +
                        "e1.rowtime as askTime," +                      
                        "1 as total_talk " +          
                        "ONE ROW PER MATCH " +
                        "AFTER MATCH SKIP TO LAST e2 " +
                        "PATTERN (e1 e2) " +
                        "DEFINE " +
                        "e1 as e1.type = 'yonghu', " +
                        "e2 as e2.type = 'guanjia' " +
                        ")"+
                        ""
                );


           DataStream<Row> appendStream =tableEnv.toAppendStream(tb2, Row.class);
		
			System.out.println("schema is:");
			tb2.printSchema();


   
        appendStream.writeAsText("/usr/local/whk", WriteMode.OVERWRITE);
      		      	    
        logger.info("stream end");	
        
        
        Table tb3 = tableEnv.sqlQuery("select  sessionId, type  from myTable");
        DataStream<Row> temp =tableEnv.toAppendStream(tb3, Row.class);
        tb3.printSchema();
        temp.writeAsText("/usr/local/whk2", WriteMode.OVERWRITE);
        
        
        env.execute("msg test");	
		
	}

大功告成,其实里面坑很多。

注意:如果使用了 TimeCharacteristic.EventTime, 请不用再使用procTime。