Flink 的提交流程,随着部署模式、资源管理平台的不同,会有不同的变化。首先我们从 一个高层级的视角,来做一下抽象提炼,看一看作业提交时宏观上各组件是怎样交互协作的。

flink提交任务到yarn命令参数 qu 提交flink任务到yarn队列_资源管理器

 具体步骤如下:
(1) 一般情况下,由客户端(App)通过分发器提供的 REST 接口,将作业提交给JobManager。
(2)由分发器启动 JobMaster,并将作业(包含 JobGraph)提交给 JobMaster。
(3)JobMaster 将 JobGraph 解析为可执行的 ExecutionGraph,得到所需的资源数量,然后向资源管理器请求资源(slots)。
(4)资源管理器判断当前是否由足够的可用资源;如果没有,启动新的 TaskManager。
(5)TaskManager 启动之后,向 ResourceManager 注册自己的可用任务槽(slots)。
(6)资源管理器通知 TaskManager 为新的作业提供 slots。
(7)TaskManager 连接到对应的 JobMaster,提供 slots。
(8)JobMaster 将需要执行的任务分发给 TaskManager。
(9)TaskManager 执行任务,互相之间可以交换数据。
如果部署模式不同,或者集群环境不同(例如 Standalone、YARN、K8S 等),其中一些步 骤可能会不同或被省略,也可能有些组件会运行在同一个 JVM 进程中。比如独立集群环境的会话模式,就是需要先启动集群,如果资源不够,只能等待资源释放, 而不会直接启动新的 TaskManager。

YARN 集群

1. 会话(Session)模式

        在会话模式下,我们需要先启动一个YARN session,这个会话会创建一个 Flink 集群。 这里只启动了 JobManager,而 TaskManager 可以根据需要动态地启动。在 JobManager 内 部,由于还没有提交作业,所以只有 ResourceManager 和 Dispatcher 在运行,如图 所示。

flink提交任务到yarn命令参数 qu 提交flink任务到yarn队列_资源管理器_02

接下来就是真正提交作业的流程,如图所示:

flink提交任务到yarn命令参数 qu 提交flink任务到yarn队列_资源管理器_03


(1)客户端通过 REST 接口,将作业提交给分发器。

(2)分发器启动 JobMaster,并将作业(包含 JobGraph)提交给 JobMaster。

(3)JobMaster 向资源管理器请求资源(slots)。

(4)资源管理器向 YARN 的资源管理器请求 container 资源。

(5)YARN 启动新的 TaskManager 容器。

(6)TaskManager 启动之后,向 Flink 的资源管理器注册自己的可用任务槽。

(7)资源管理器通知 TaskManager 为新的作业提供 slots。

(8)TaskManager 连接到对应的 JobMaster,提供 slots。

(9)JobMaster 将需要执行的任务分发给 TaskManager,执行任务。

2. 单作业(Per-Job)模式

                在单作业模式下,Flink 集群不会预先启动,而是在提交作业时,才启动新的 JobManager。具体流程如图所示。

flink提交任务到yarn命令参数 qu 提交flink任务到yarn队列_大数据_04


(1)客户端将作业提交给 YARN 的资源管理器,这一步中会同时将 Flink 的 Jar 包和配置上传到 HDFS,以便后续启动 Flink 相关组件的容器。

(2)YARN 的资源管理器分配 Container 资源,启动 Flink JobManager,并将作业提交给JobMaster。这里省略了 Dispatcher 组件。

(3)JobMaster 向资源管理器请求资源(slots)。

(4)资源管理器向 YARN 的资源管理器请求 container 资源。

(5)YARN 启动新的 TaskManager 容器。

(6)TaskManager 启动之后,向 Flink 的资源管理器注册自己的可用任务槽。

(7)资源管理器通知 TaskManager 为新的作业提供 slots。

(8)TaskManager 连接到对应的 JobMaster,提供 slots。

(9)JobMaster 将需要执行的任务分发给 TaskManager,执行任务。

可见,区别只在于 JobManager 的启动方式,以及省去了分发器。当第 2 步作业提交给JobMaster,之后的流程就与会话模式完全一样了。

3. 应用(Application)模式

        应用模式与单作业模式的提交流程非常相似,只是初始提交给 YARN 资源管理器的不再是具体的作业,而是整个应用。一个应用中可能包含了多个作业,这些作业都将在 Flink 集群中启动各自对应的 JobMaster。