MATLAB+神经网络30个案例分析,第24例,input_train是真实数据么?还是根据自身数值特点随机选取的?

谷歌人工智能写作项目:神经网络伪原创

bp神经网络回归模型python bp神经网络回归分析案例_bp神经网络回归模型python

matlab神经网络目前有什么具体的实际应用

MATLAB中文论坛2010年出过一本书,北航出版社的,叫《MATLAB神经网络30个案例分析(豆瓣)》好文案。我觉得把它作为入门书挺好的,每一章配有视频和代码,可以依样画葫芦。

刚刚顺手还看到了另一本书《MATLAB智能算法30个案例分析》,看目录貌似内容也比较接近的。

《神经网络》包含的30个例子:P神经网络的数据分类——语音特征信号分类BP神经网络的非线性系统建模——非线性函数拟合遗传算法优化BP神经网络——非线性函数拟合神经网络遗传算法函数极值寻优——非线性函数极值寻优基于BP_Adaboost的强分类器设计——公司财务预警建模PID神经元网络解耦控制算法——多变量系统控制RBF网络的回归——非线性函数回归的实现GRNN的数据预测——基于广义回归神经网络的货运量预测离散Hopfield神经网络的联想记忆——数字识别离散Hopfield神经网络的分类——高校科研能力评价连续Hopfield神经网络的优化——旅行商问题优化计算SVM的数据分类预测——意大利葡萄酒种类识别SVM的参数优化——如何更好的提升分类器的性能SVM的回归预测分析——上证指数开盘指数预测SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测自组织竞争网络在模式分类中的应用——患者癌症发病预测SOM神经网络的数据分类——柴油机故障诊断Elman神经网络的数据预测——电力负荷预测模型研究概率神经网络的分类预测——基于PNN的变压器故障诊断神经网络变量筛选——基于BP的神经网络变量筛选LVQ神经网络的分类——乳腺肿瘤诊断LVQ神经网络的预测——人脸朝向识别小波神经网络的时间序列预测——短时交通流量预测模糊神经网络的预测算法——嘉陵江水质评价广义神经网络的聚类算法——网络入侵聚类粒子群优化算法的寻优算法——非线性函数极值寻优遗传算法优化计算——建模自变量降维基于灰色神经网络的预测算法研究——订单需求预测基于Kohonen网络的聚类算法——网络入侵聚类神经网络GUI的实现——基于GUI的神经网络拟合、模式识别、聚类。

怎么用spss神经网络来分类数据

用spss神经网络分类数据方法如下:神经网络算法能够通过大量的历史数据,逐步建立和完善输入变量到输出结果之间的发展路径,也就是神经网络,在这个神经网络中,每条神经的建立以及神经的粗细(权重)都是经过大量历史数据训练得到的,数据越多,神经网络就越接近真实。

神经网络建立后,就能够通过不同的输入变量值,预测输出结果。例如,银行能够通过历史申请贷款的客户资料,建立一个神经网络模型,用于预测以后申请贷款客户的违约情况,做出是否贷款给该客户的决策。

本篇文章将用一个具体银行案例数据,介绍如何使用SPSS建立神经网络模型,用于判断将来申请贷款者的还款能力。

选取历史数据建立模型,一般会将历史数据分成两大部分:训练集和验证集,很多分析者会直接按照数据顺序将前70%的数据作为训练集,后30%的数据作为验证集。

如果数据之间可以证明是相互独立的,这样的做法没有问题,但是在数据收集的过程中,收集的数据往往不会是完全独立的(变量之间的相关关系可能没有被分析者发现)。

因此,通常的做法是用随机数发生器来将历史数据随机分成两部分,这样就能够尽量避免相同属性的数据被归类到一个数据集当中,使得建立的模型效果能够更加优秀。

在具体介绍如何使用SPSS软件建立神经网络模型的案例之前,先介绍SPSS的另外一个功能:随机数发生器。SPSS的随机数发生器常数的随机数据不是真正的随机数,而是伪随机数。

伪随机数是由算法计算得出的,因此是可以预测的。当随机种子(算法参数)相同时,对于同一个随机函数,得出的随机数集合是完全相同的。与伪随机数对应的是真随机数,它是真正的随机数,无法预测也没有周期性。

目前大部分芯片厂商都集成了硬件随机数发生器,例如有一种热噪声随机数发生器,它的原理是利用由导体中电子的热震动引起的热噪声信号,作为随机数种子。

用BP神经网络分析,谁帮我做一下,我实在不会,先谢谢了 30

是做人口预测是吧?将历史数据作为样本进行训练,最后再用前几年的数据作为输入,输出就是预测值。附件是电力负荷预测的例子,你可以参考下。

BP(BackPropagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。

在看了案例二中的BP神经网络训练及预测代码后,我开始不明白BP神经网络究竟能做什么了。。。 程序最后得到

网络的训练过程与使用过程了两码事。

比如BP应用在分类,网络的训练是指的给你一些样本,同时告诉你这些样本属于哪一类,然后代入网络训练,使得这个网络具备一定的分类能力,训练完成以后再拿一个未知类别的数据通过网络进行分类。

这里的训练过程就是先伪随机生成权值,然后把样本输入进去算出每一层的输出,并最终算出来预测输出(输出层的输出),这是正向学习过程;最后通过某种训练算法(最基本的是感知器算法)使得代价(预测输出与实际输出的某范数)函数关于权重最小,这个就是反向传播过程。

您所说的那种不需要预先知道样本类别的网络属于无监督类型的网络,比如自组织竞争神经网络。