题目大意:有n个人和m个组,一个人可能属于多个组,现在请你从某些组中去掉几个人,使得每个人都只属于一个组,且人数最多的组中人员数目达到最小

解题思路:最大值最小化,二分
建图就比较简单了,二分主要二分组别到超级汇点的容量

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define N 2010
#define INF 0x3f3f3f3f

struct Edge{
    int from, to, cap, flow;
    Edge() {}
    Edge(int from, int to, int cap, int flow) : from(from), to(to), cap(cap), flow(flow) {}
};

struct Dinic{
    int n, m, s, t;
    vector<Edge> edges;
    vector<int> G[N];
    bool vis[N];
    int d[N], cur[N];

    void init(int n) {
        this->n = n;
        for (int i = 0; i <= n; i++) {
            G[i].clear();
        }
        edges.clear();
    }

    void AddEdge(int from, int to, int cap) {
        edges.push_back(Edge(from, to, cap, 0));
        edges.push_back(Edge(to, from, 0, 0));
        int m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    } 

    bool BFS() {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        Q.push(s);
        vis[s] = 1;
        d[s] = 0;

        while (!Q.empty()) {
            int u = Q.front();
            Q.pop();
            for (int i = 0; i < G[u].size(); i++) {
                Edge &e = edges[G[u][i]];
                if (!vis[e.to] && e.cap > e.flow) {
                    vis[e.to] = true;
                    d[e.to] = d[u] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }

    int DFS(int x, int a) {
        if (x == t || a == 0)
            return a;

        int flow = 0, f;
        for (int i = cur[x]; i < G[x].size(); i++) {
            Edge &e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
                e.flow += f;
                edges[G[x][i] ^ 1].flow -= f;
                flow += f;
                a -= f;
                if (a == 0)
                    break;
            }
        }
        return flow;
    }

    int Maxflow(int s, int t) {
        this->s = s; this->t = t;
        int flow = 0;
        while (BFS()) {
            memset(cur, 0, sizeof(cur));
            flow += DFS(s, INF);
        }
        return flow;
    }

    bool MinCut(int mid, int m, int n, int source, int sink) {
        for (int i = 0; i < edges.size(); i++)
            edges[i].flow = 0;

        for (int i = 0; i < m; i++) 
            for (int j = 0; j < G[i].size(); j++) 
                if (edges[G[i][j]].to == sink)
                    edges[G[i][j]].cap = mid;

        int t = Maxflow(source, sink);

        if (t == n) {
            return true;
        }
        return false;
    }
};

Dinic dinic;
int n, m, source, sink;
int num[N], Max;
char name[30]; 

void init() {
    source = n + m; sink = source + 1;
    memset(num, 0, sizeof(num));
    dinic.init(sink);
    Max = -INF;

    int t;
    char c;
    for (int i = 0; i < n; i++) {
        dinic.AddEdge(source, m + i, 1);
        scanf("%s", name);
        c = getchar();
        while (c != '\n') {
            scanf("%d", &t);
            dinic.AddEdge(m + i, t, 1);
            num[t]++;
            c = getchar();
        }
    }


    for (int i = 0; i < m; i++) {
        Max = max(Max, num[i]);
        dinic.AddEdge(i, sink, num[i]);
    }
}

void solve() {
//  printf("Max is %d\n", Max);
    int l = 0, r = Max, mid, ans = 0;
    while (l <= r) {
        mid = (l + r) / 2;
        if (dinic.MinCut(mid, m, n, source, sink)) {
            r = mid - 1;
            ans = mid;
        }
        else l = mid + 1; 
    }
    printf("%d\n", ans);
}

int main() {
    while (scanf("%d%d", &n, &m) != EOF && n + m) {
        init();
        solve();
    }
    return 0;
}