最小有向生成树:给定一个有向带权图G和其中一个点u,找出一个以u为跟结点,权和最小的有向生成树。有向生成树也叫树形图,是指一个类似树的有向图,满足以下条件:
1.恰好有一个入度为0的点,称为根结点
2.其他结点的入度均为1
3.可以从根结点到达其他结点
算法的主过程如下:
1.找到除了root以为其他点的权值最小的入边。用In[i]记录
2.如果出现除了root以为存在其他孤立的点,则不存在最小树形图。
3.找到图中所有的环,并对环进行缩点,重新编号。
4.更新其他点到环上的点的距离
5.重复3,4直到没有环为止。
#include <cstdio>
#include <cstring>
const int MAXNODE = 1010;
const int MAXEDGE = 100010;
typedef int Type;
const Type INF = 0x3f3f3f3f;
struct Edge {
int u, v;
Type dis;
Edge() {}
Edge(int u, int v, Type dis): u(u), v(v), dis(dis) {}
};
struct Directed_MT{
int n, m;
Edge edges[MAXEDGE];
int vis[MAXNODE];
int pre[MAXNODE];
int id[MAXNODE];
Type in[MAXNODE];
void init(int n) {
this->n = n;
m = 0;
}
void AddEdge(int u, int v, Type dis) {
edges[m++] = Edge(u, v, dis);
}
Type DirMt(int root) {
Type ans = 0;
while (1) {
//初始化
for (int i = 0; i < n; i++) in[i] = INF;
for (int i = 0; i < m; i++) {
int u = edges[i].u;
int v = edges[i].v;
//找寻最小入边,删除自环
if (edges[i].dis < in[v] && u != v) {
in[v] = edges[i].dis;
pre[v] = u;
}
}
//如果没有最小入边,表示该点不连通,则最小树形图形成失败
for (int i = 0; i < n; i++) {
if (i == root) continue;
if (in[i] == INF) return -1;
}
int cnt = 0;//记录缩点
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0;//树根不能有入边
for (int i = 0; i < n; i++) {
ans += in[i];
int v = i;
//找寻自环
while (vis[v] != i && id[v] == -1 && v != root) {
vis[v] = i;
v = pre[v];
}
//找到自环
if (v != root && id[v] == -1) {
//这里不能从i开始找,因为i有可能不在自环内
for (int u = pre[v]; u != v; u = pre[u])
id[u] = cnt;
id[v] = cnt++;
}
}
//如果没有自环了,表示最小树形图形成成功了
if (cnt == 0) break;
//找到那些不是自环的,重新给那些点进行标记
for (int i = 0; i < n; i++)
if (id[i] == -1) id[i] = cnt++;
for (int i = 0; i < m; i++) {
int v = edges[i].v;
edges[i].v = id[edges[i].v];
edges[i].u = id[edges[i].u];
if (edges[i].u != edges[i].v)
edges[i].dis -= in[v];
}
//缩点完后,点的数量就边了
n = cnt;
root = id[root];
}
return ans;
}
}MT;
int main() {
return 0;
}