1081 Rational Sum (20 分)
原创
©著作权归作者所有:来自51CTO博客作者fanxinglanyu的原创作品,请联系作者获取转载授权,否则将追究法律责任
Given N rational numbers in the form numerator/denominator
, you are supposed to calculate their sum.
Input Specification:
Each input file contains one test case. Each case starts with a positive integer N (≤100), followed in the next line Nrational numbers a1/b1 a2/b2 ...
where all the numerators and denominators are in the range of long int. If there is a negative number, then the sign must appear in front of the numerator.
Output Specification:
For each test case, output the sum in the simplest form integer numerator/denominator
(分子/分母)where integer
is the integer part of the sum, numerator
< denominator
, and the numerator and the denominator have no common factor. You must output only the fractional(小数) part if the integer part is 0.
Sample Input 1:
Sample Output 1:
Sample Input 2:
Sample Output 2:
Sample Input 3:
Sample Output 3:
思路:
简单的分数计算
参考代码:
#include
#include
using namespace std;
typedef long long LL;
LL gcd(LL a,LL b){
return b == 0 ? a : gcd(b , a % b);
}
struct Fraction
{
LL up, down;
};
Fraction reduction(Fraction result){//化简
if(result.down < 0){//如果分母为负数
result.up = -result.up;
result.down = -result.down;
}
if(result.up == 0){//如果分子为0
result.down = 1;
}else{
int d = gcd(abs(result.up),abs(result.down));//求最大公约数
result.up /= d;//化简
result.down /= d;
}
return result;
}
Fraction add(Fraction f1, Fraction f2){
Fraction result;
result.up = f1.up * f2.down + f2.up * f1.down;//分数和分子
result.down = f1.down * f2.down;//分数和分母
return reduction(result);//返回结果化简
}
void showResult(Fraction r){//展示结果
reduction(r);
if(r.down == 1)printf("%lld\n", r.up);//分母为1
else if(abs(r.up) > r.down){//假分数
printf("%lld %lld/%lld\n", r.up / r.down, abs(r.up) % r.down, r.down);
}else{//真分数
printf("%lld/%lld\n", r.up, r.down);
}
}
int main(){
int n;
Fraction sum, temp;
//赋予初始值
sum.up = 0;
sum.down = 1;
scanf("%d",&n);
for (int i = 0; i < n; ++i)
{
scanf("%lld/%lld", &temp.up, &temp.down);
sum = add(sum,temp);
}
showResult(sum);
return 0;
}