tensorflow由于谷歌的原因,不同的版本有时候改动比较大,所以决定好自己想使用的版本后就不要轻易更改,免得后续移植程序的时候出现很多错误。  本文以及后续文章关于tensorflow的学习和开发选在windows 10 平台上,使用python。不管是python还是tensorflow,网上都有很多安装方式,但是最简单快捷的应该是使用Anaconda。使用Anaconda管理环境最清晰
GPU环境的配置 在深度学习中,模型往往很复杂,数据量很大,此时使用GPU运行会快很多。而使用GPU就需要安装CUDA和CuDNN。本文是为了使用tensorflowgpu版本而使用GPU。 (1)GPU的配置 首先,要使用TensorFlowGPU,需要达到的硬件前提:显卡类型是NVIDIA,显卡的计算能力要至少达到3.0。 可以在下面的网站查看: https://developer.nv
TensorFlow有CPU版本和GPU版本之分,CPU版本安装相对简单,按着TensorFlow的官方文档进行安装即可。但CPU版本只能使用CPU进行计算,计算效率低。对于简单的模型计算可以使用CPU模式,但对于复杂的模型训练就需要GPU的支持了。GPU版本安装方式TensorFlowGPU版本有两种安装方式:源码编译安装这种方式灵活性最强,但这种方式不但会涉及TensorFlo
如何基于Anaconda安装tensorflow-gpu报告实验环境:Windows 10 64位操作系统NVIDIA驱动程序版本419.72目录如何基于Anaconda安装tensorflow-gpu报告实验环境:一、 为什么要使用tensorflow二、 安装流程1. 安装前的明确2. 详细步骤1)CUDA安装配置2)CuDNN安装配置3)Tensorflow安装Tensorflow环境
这是19年初学faster rcnn时记下的一些笔记。 这几天主要的任务是用tensorflow配置并运行Faster-RCNN,配置好笔记本的环境,下载好各个需要用到的库。虽然说下几个软件说起来是很轻松的事,但这学期一直在不断的尝试配置tensorflowGPU版本,但每次都因为一些解决不了的原因失败了,网上的教程太多了,自己也分不清该按照哪个版本来。 这次经过几天的不断尝试,终于成功地运行了
查看是否有GPUimport tensorflow as tfgpu_device_name = tf.test.gpu_device_name()print(gpu_device_name)输出/device:GPU:0GPU是否可用# 返回True或者Falsetf.test.is_gpu_available()from tensorflow.python.client import devi
原创 2023-02-27 10:48:06
1150阅读
已安装好anaconda3,python3.7,cuda10.11、下载cuda1.1 先查看自己的显卡支持的cuda版本在桌面右键选择nvidia控制面板,然后在系统信息组件中就能查看。 我的是cuda10.11.2 到官网下载cuda:下载安装完要添加环境变量1.3 cuda添加环境变量,我安装的时候已自动添加了,没有的话手动添加一下:还需把以下路径添加到Path环境变量: C:\Progra
1.gcc/g++降级Ubuntu18.04自带的gcc/g++是7.0版本的,但cuda不支持这么高版本,我们需要安装4.8版本。 1.下载安装4.8版本的gcc/g++sudo apt-get install gcc-4.8 sudo apt-get install g++-4.82.让gcc软连接至4.8版本的gcc,g++软连接至4.5版本的g++装完后进入到/usr/bin目
转载 2024-05-30 09:44:00
226阅读
查看机器 的信息: 持续更新查看: 其他方式如下:
原创 2022-08-10 17:32:44
208阅读
<!-- @page { size: 21cm 29.7cm; margin: 2cm } P { margin-bottom: 0.21cm } -->         在现今商品社会中,任何物品都有一个“价格”,连“古典文物”都有价。一般而言,开源软件都是“免费的”,但是,免了多少“费”(fee),打了多少“折
最近在整理模型加速的问题,使用到了GPU,但是有时候发现GPU的速度尽然比CPU还低,后来查找一些相关的资料后发现可能是由于两方面原因造成的:1. GPU的计算能力不行(毕竟对于笔记本自带的GPU而言其性能并不一定比CPU强);2. GPU和CPU之间存在通讯问题,即数据的读取要在CPU中进行,读取后的数据再送入GPU中进行处理。针对第2个问题,考虑以队列的方式来解决,具体原因为:当数据在队列中传
    不多说,直接上干货!                       You must choose oneTensorFlow with CPU supp
转载 2024-08-16 21:26:09
21阅读
     对于算法小白来说,配置环境甚至比学网络模型还要难,配置环境过程中会遇到各种坑,一定要耐心,不要砸机(计算机)!花了6、7个小时的时间才把TensorFlow-gpu安装好,必须分享记录一下。首先,感谢这篇blog:,整个安装过程很详细。 在安装之前要确认一下几件事情。1、确保电脑上有独立的英伟达显卡且安装了相应的驱动,(查看显卡型号:右击计算机-设
转载 2024-04-25 12:58:52
50阅读
历时两天,踩过很多坑,终于语气词装好了。说一下我的情况:tensorflowGPU-1.14.0,CUDA-10.0,cuDNN-v7.6.5,Anaconda3-2019.10,python-3.6,1650显卡。2020年3月2日 好了下面是步骤!大致的步骤为一、安装CUDA和cuDNN。二、安装Anaconda三、安装tensorflowGPU 下面一一介绍:一、安装CU
转载 2024-05-27 10:01:45
452阅读
折腾4天终于装好 tensorflow-gpu 版,此教程一是按照实际操作给自己做个记录,二是给各位一个参考尽量节省安装时间。 硬件:CPU: i5-7400,GPU: GeForce GTX1050Ti系统:Ubuntu 16.04, cuda 8.0, cudnn v5 1 安装前准备工作1.1 检查自己的 GPU 是否满足安装条件  打开终端输入以下指令: lspci
转载 2024-08-21 11:12:00
79阅读
今天给大家详细讲解一下如何在Windows10上配置安装好tensorflowGPU版本1、首先,打开Tensorflow官网的安装指南(https://www.tensorflow.org/install/install_windows)。2、官网对安装Tensorflow GPU版提出了一些要求,如下图所示。要安装GPU版,首先确认自己电脑的显卡是否满足要求,也就是官网要求中的第四点。到电脑
TensorFlow 计算加速内容摘自《TensorFlow实战Google深度学习框架》 第二版1. TensorFlow使用GPUTensorFlow程序可以通过tf.device函数来通过名称指定运行每一个操作的设备,这个设备可是是本地的GPU或CPU,也可以是一台远程的服务器。在默认情况下,就算及其有多个CPU,TensorFlow也不会区分他们,所有的CPU都使用/cpu:0为名称。一台
查看keras认得到的GPU from keras import backend as K K.tensorflow_backend._get_available_gpus() Out[28]: ['/job:localhost/replica:0/task:0/device:GPU:0'] 查看更 ...
转载 2021-09-08 13:46:00
822阅读
2评论
# Python 如何查看 TensorFlow 是否使用GPU 在深度学习的开发中,TensorFlow 是一个流行的框架。为了提升模型训练的效率及性能,通常会使用 GPU。在某些情况下,我们可能希望验证 TensorFlow 是否正确地识别并使用GPU。如果您希望确认这一点,下面的方案将为您提供一系列步骤和示例代码,帮助您检查 TensorFlow 是否在使用 GPU。 ## 环境
原创 8月前
339阅读
写在前面写这篇文章主要是为了整理一下之前配置环境埋下的坑,以及加深一下印象,为了以后当需要更改环境时,能够更快地配置好;或者当环境出问题的时候,更快地定位出问题。1.anaonda 配置tensorflow环境(2.x) conda创建一个虚拟环境conda create -n py37 python=3.72.激活环境`conda activate py37`3.安装tensorflow-gpu
  • 1
  • 2
  • 3
  • 4
  • 5