作者 | MrZhaoyx工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测。简介BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法进行权值与阈值的调整。在20世纪80年代,几位不同的学者分别开发出了用于训练多层感知机的反向传播算法,David Rumelhart和James
转载
2023-07-04 17:31:28
132阅读
在本篇博文中,我们只使用numpy来搭建一个简单的包含输入层、隐藏层、输出层的神经网络,我们选择sigmoid作为激活函数,选择均方差损失函数,最后使用mnist数据集进行了训练和测试。1、公式推导均方差损失函数:\[loss = J(W,b,x,y)=\frac{1}{2}||a^L-y||^2
\]前向传播过程:\[ z^l = W^la^{l-1}+b^l \\
a^l=\si
转载
2023-06-29 22:08:26
192阅读
许久未更,是因为开学之后学习任务太充实了。每天都有做不完的事情,每件事情都又想把它做好。我航中秋国庆假期长达8天,真应了那句话:该放的假一天不少,该补的课一次没有。期间,有多门作业要完成。今天,为大家推送简单神经网络的实现,是我的《人工智能加速器》的作业。实验内容搭建基本的多层神经网络,并在给定测试集上进行精度测试。注1:不使用深度学习框架完成网络搭建。注2:不限制编程语言,推荐使用python进
转载
2023-11-25 09:20:36
49阅读
一、数字图像处理 1.1 问题假设所给的全部人脸图像都未出现损坏等问题;人脸的朝向仅分为5类:左、中左、中间、中右、右,其他朝向不予考虑;对于题目中所给的人脸图像,不考虑人脸的复杂表情问题;1.2 基于边缘检测Sobel算子的人脸特征向量提取人脸识别的第一步便是人脸特征的提取,即如何把人脸图像转换成数字特征值。目前人脸特征提取的方法有很多,如主元分析法、Fisher线性判别法、小波分析法等。通过特
转载
2023-08-18 15:52:05
249阅读
科技创新 2m6钎第20期I科技创新与应用 基于时间序列的BP神经网络猪肉价格预测 张津张瑞斌 (成都理工大学管理科学学院,四川成都610059) 摘要:猪肉价格是不稳定的,起伏变化的,猪肉价格的预测是非线性,非平稳的问题“而神经网瘩具有很强的非线性、自组织、自学习能力.能够很好地处理非线性信息。文章选用基于时间序列的BP神经网络预测法,对猪肉的价格进行预测,对加大农民养殖利益以及防止生猪生产的市
转载
2023-09-17 10:58:36
17阅读
本文是在GPU版本的Tensorflow = 2.6.2 , 英伟达显卡驱动CUDA版本 =11.6,Python版本 = 3.6, 显卡为3060的环境下进行验证实验的!!! 文章目录一、M-P神经元模型二、BP神经网络模型1. 感知机模型2. BP神经网络模型3.BP神经网络传播过程4. BP神经网络向前推导5.BP神经网络训练过程步骤一:定义神经网络前向传播的结构、各个参数以及输出结果步骤二
转载
2023-06-26 22:05:23
331阅读
文章目录一、卷积神经网络简介(一)什么是卷积神经网络(二)卷积神经网络的结构(三)为何要用卷积神经网络二、PyTorch框架简介(一)环境搭建(二)一些基本概念和应用三、应用示例(一)项目目标(二)准备样本(三)构造卷积神经网络(四)训练并保存网络(五)加载并使用网络 PyTorch框架使得构造和训练神经网络方便了许多,为简述其用法,同时也为说明卷积神经网络的原理,本文举例说明如何基于PyTo
转载
2023-10-16 00:15:46
376阅读
目录1. BP神经网络结构与原理1.1 结构1.2 原理1.3 流程2. BP神经网络的实现2.1 第一种实现2.1.1 前向计算2.1.2 反向传播2.2 第二种实现2.2.1 交叉熵代价函数2.2.2 种规范化技术2.3 python实现2.3.1 案例一2.3.2 案例二 1. BP神经网络结构与原理注:1.1 结构BP网络是在输入层与输出层之间增加若干层(一层或多层)神经元,这些神经元称
转载
2023-10-12 18:57:49
118阅读
大家好 我是毕加锁(锁!)今天教大家用Python实现BP神经网络(附代码)用Python实现出来的机器学习算法都是什么样子呢? 前两期线性回归及逻辑回归项目已发布(见文末链接),今天来讲讲BP神经网络。BP神经网络神经网络model先介绍个三层的神经网络,如下图所示输
原创
2022-12-30 09:49:45
888阅读
###2018/6/16 keras_bp###
###非原创 对他人文章进行改编 侵删###
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras.optimizers import SGD,adam
from keras.models import Sequential
from
转载
2023-05-23 22:21:18
129阅读
STEP 1 导入数据。可以直接导入Excel数据。[~, ~, raw] = xlsread('C:\sz000004.xlsx','Sheet1','A2:I7');也可以命令行创建数据,x = [(-10:0.1:10)];
y = [sin(-10:0.1:10)];STEP 2 启动nftool工具箱直接在APP里搜索nftool即可。STEP3 设置BP神经网络参数设置训练集输入和标签
转载
2023-10-03 11:14:13
92阅读
1、前馈神经网络、BP神经网络、卷积神经网络的区别与联系一、计算方法不同1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。二、用途不同1、前馈神经网络:主要应用包括感知器网络、BP
转载
2023-07-05 22:48:02
193阅读
一、BP神经网络结构模型 BP算法的基本思想是,学习过程由信号的正向传播和误差的反向传播俩个过程组成,输入从输入层输入,经隐层处理以后,传向输出层。如果输出层的实际输出和期望输出不符合,就进入误差的反向传播阶段。误差反向传播是将输出误差以某种形式通过隐层向输入层反向传播,并将误差分摊给各层的
转载
2023-10-30 23:20:25
82阅读
# -*- coding: utf-8 -*- # --------------------------------------------------------------------------- # BP-ANN.py # Created on: 2014-06-12 09:49:56.00000 # Description: # -----------------------------...
转载
2016-08-18 11:45:00
260阅读
2评论
目录BP神经网络的基本原理BP神经网络的C++实现将BP神经网络应用于手写数字识别坑点存在的疑惑BP神经网络的基本原理参考资料:机器学习(西瓜书) - 周志华如图所示,一个简单的BP网络包含输入层,隐藏层和输出层。给定输入值\(x_1,x_2,...,x_n\),隐藏层和输出层的输出分别值为。\[b_i=f(\sum\limits_{j}v_{ji}x_{j}-\gamma_i)\\
\]\[y
转载
2023-06-07 15:37:36
146阅读
⛄一、BP神经网络简介1 BP神经网络概述1.1 BP神经网络的内涵 BP神经网络是神经网络的一种经典结构,其结构简单、训练简单,是学习神经网络的一种输入算法,包含一个特定的模型(神经网络)和一个特定的训练算法[1,2,3]。神经网络被描述为多层神经元的叠加。外部输入首先通过连接传递给一组神经元。训练后,一些神经元之间的连接权值会很低,这意味着这些神经元之间的通信强度很低。通常使用“层”来表示一组
转载
2023-07-05 21:03:15
27阅读
在"一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)"中我们详细介绍了BP算法的原理和推导过程,并且用实际的数据进行了计算演练。在下篇中,我们将自己实现BP算法(不使用第三方的算法框架),并用来解决鸢尾花分类问题。 图1 鸢尾花 鸢尾花数据集如图2所示,总共有三个品种的鸢尾花(setosa、versicolor和virginica),每个类别50条样本数据,每个样本有四个特征(
转载
2024-03-11 14:05:42
70阅读
摘要在MatlabR2010a版中,如果要创建一个具有两个隐含层、且神经元数分别为5、3的前向BP网络,使用旧的语法可以这样写:net1
= newff(minmax(P),
[5
3 1]);注意minmax()函数的使用,还有对输出层神经元数(1)的指定。当然也可以采用新的语法,更简洁(请留意差异):net2
= newff(P, T,
[5
3]);
不用求minmax,也不用人工指定输出层
转载
2023-10-30 23:27:04
119阅读
前言【Tensorflow】Tensorflow实现线性回归及逻辑回归【深度学习】神经网络与BP算法前一篇介绍了使用 Tensorflow 实现线性回归及逻辑回归,并实现了手写数字识别的案例;后一篇介绍了BP神经网络,以及Python实现。本篇将通过 Tensorflow 实现简单神经网络(1个输入层、2个隐藏层、1个输出层),并应用有手写数字识别案例。代码# 引入包
import tensorf
转载
2023-11-27 12:52:15
195阅读
BP 神经网络的简单实现from keras.models import Sequential #导入模型
from keras.layers.core import Dense #导入常用层
train_x,train_y #训练集
test_x,text_y #测试集
model=Sequential() #初始化模型
model.add(Dense(3,input_shape=(32,),a
转载
2023-07-27 10:07:34
152阅读