# Python 用户画像开发指南 在数据科学与分析认识的海洋中,用户画像是了解用户行为和偏好的一个重要工具。通过技术,我们可以将用户分成不同的群体,从而为个性化服务和营销策略奠定基础。本文将引导您完成在 Python 中实现用户画像的全过程。 ## 任务流程概览 以下是实现用户画像的整体步骤: | 步骤 | 描述 | |------|------| | 1. 数据收集 |
原创 8月前
79阅读
1 简介随着模糊理论的形成,针对不同的应用层面,越来越多的模糊算法被提出来,最为典型的有基于目标函数的模糊方法、基于相似-模糊关系的方法、基于模糊等价关系的传递闭包法、还有基于图论的最小支撑树方法等。在众多模糊算法中,基于目标函数的模糊方法(FCM)是其中最受欢迎的一种。该方法是将归类问题转化为一个约束的、非线性的规划问题。通过优化求解这个规划问题,从而得到数据集的模糊划分和归类。
在理清画像规划与类型来源后,据企业会员规模与用户群边界定义,手上会有一堆的数据,这时需有个好用的工具,进行数据分析。SPSS 25 版提供了多种数据比较分类的菜单式统计分析方法,同时支援python 整合,是一个十分适合小数据企业的统计分析工具。下面就依SPSS 25 版,进行一个案例演示: 某企业有一群会员,注册即将满一周年,时
最近在阅读阿里数据分析专家卢辉的《数据挖掘与数据化运营实战》。书中结合了实际业务案例,介绍了在实战项目中数据分析和数据挖掘的许多知识点,干货满满。因此,打算结合书中内容,对一些重要的主题加以总结,在过程中加深对各个知识点的理解。 文章目录1. 应用场景2. 常用方法2.1 原型Kmeans算法高斯混合模型GMM2.2 密度DBSCAN2.3 层次3. 效果的评估4.
一、分类二、k-means2.1、基本算法2.2、 算法流程2.3、算法分析2.4、结束条件2.5、散度2.6、时间和空间复杂度2.7、常见问题2.8、SAE和SAE三、层次3.1、分类3.2、计算步骤3.3、lance-williams3.4、层次问题四、密度(DBSCAN)4.2、解释4.2、算法步骤4.3、DBSCAN优缺点4.4、变密度的簇4.5、簇评估分类4.5.1、图
转载 2023-06-21 22:09:52
173阅读
(Clustering),顾名思义就是“物以类聚,人以群分”,其主要思想是按照特定标准把数据集聚合成不同的簇,使同一簇内的数据对象的相似性尽可能大,同时,使不在同一簇内的数据对象的差异性尽可能大。通俗地说,就是把相似的对象分到同一组。算法通常不使用训练数据,只要计算对象间的相似度即可应用算法。这在机器学习领域中被称为无监督学习。某大型保险企业拥有海量投保客户数据,由于大数据技术与相关人才的
引用:Core Concepts — gensim<<自然语言处理入门>>一、简介         文本( text clustering ,也称文档或 document clustering )指的是对文档进行的分 析,被广泛用于文本挖掘和信息检索
(Clustering)简单来说就是一种分组方法,将一事物中具有相似性的个体分为一用的算法。具体步骤如下:从n...
原创 2022-12-18 01:06:50
1479阅读
上一篇博文中介绍了算法中的kmeans算法.无可非议kmeans因为其算法简单加之分类效率较高。已经广泛应用于应用中.然而kmeans并不是十全十美的.其对于数据中的噪声和孤立点的带来的误差也是让人头疼的.于是一种基于Kmeans的改进算法kmediod应运而生.kmediod和Kmeans算法核心思想大同小异,可是最大的不同是在修正中心的时候,kmediod是计算簇中除开
转载 2023-10-10 09:34:12
189阅读
在这篇博文中,我将深入探讨如何利用Python对于电影评分数据进行用户的分析。电影评分数据是一个典型的“大数据”案例,通过分析用户的评分行为,可以揭示用户的偏好特征,从而实现用户分群,为个性化推荐提供支撑。 ## 背景描述 在现代互联网时代,电影的观看和评分行为积累了大量用户数据。这些数据如果能够进行合理的聚类分析,将助力于改善用户体验和提升推荐效果。例如,通过将用户分为不同的群体,不同群
原创 6月前
55阅读
鸢尾花(Iris)数据集是一个经典的数据集
文章目录初步认识初值选取小批 初步认识k-means翻译过来就是K均值算法,其目的是将样本分割为k个簇,而这个k则是KMeans中最重要的参数:n_clusters,默认为8。下面做一个最简单的import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklear
转载 2023-07-28 10:21:42
125阅读
LVQ与k-means不同之处在于,它是有标记的。基本思想:初始化q个原型向量(q代表需要的类别数),每个原型向量也初始化其标签(标签与样本标签取值范围相同),如果原型向量的标签与某样本标签相同/不同,则使用两者间距离更新原型向量(相同时靠近更新,不同时远离更新)。因此,原型向量将反映一个标签的样本与其他标签的样本间的“边界”。训练完毕后,根据样本到原型向量的距离,对样本进行团簇划分。
      Spark作为一种开源集群计算环境,具有分布式的快速数据处理能力。而Spark中的Mllib定义了各种各样用于机器学习的数据结构以及算法。Python具有Spark的API。需要注意的是,Spark中,所有数据的处理都是基于RDD的。首先举一个方面的详细应用例子Kmeans:   下面代码是一些基本步骤,包括外部数据,RDD预处理,训练模型,预测。#c
转载 2023-07-17 16:37:22
130阅读
通用论坛正文爬取这是今年和队友一起参加第五届泰迪杯的赛题论文,虽然最终只获得了一个三等奖。但是在这个过程中和队友也一起学到了不少东西,特此记录。1、  简单介绍赛题的目的,是让参赛者对于任意 BBS 类型的网页,获取其 HTML 文本内容,设计一个智能提取该页面的主贴、所有回帖的算法。2、  前期准备由于之前没有接触过爬虫,我和队友首先了解了目前主流的用于爬虫的语言和框架,最终
前面做过一个神经网络的分类器 现在有一些数据需要做处理。 那什么
原创 2023-08-08 10:24:43
223阅读
      考虑到学习知识的顺序及效率问题,所以后续的几种方法不再详细讲解原理,也不再写python实现的源代码,只介绍下算法的基本思路,使大家对每种算法有个直观的印象,从而可以更好的理解函数中参数的意义及作用,而重点是放在如何使用及使用的场景。     (题外话: 今天看到一篇博文:刚接触机器学习这一个月我都做了什么?&nb
转载 2023-08-24 13:07:37
413阅读
1、输入原始图片 2、代码实现:#include<opencv2\opencv.hpp> #include<iostream> using namespace std; using namespace cv; int main() { Mat src = imread("C:/Users/lzg/Desktop/opencv_test/Project1/1
转载 2023-06-21 22:01:24
141阅读
在GMM中使用EM算法我们使用k个多元高斯分布的混合高斯分布GMM来对数据进行,其中每一个分布代表一个数据簇。首先,随机选择k个对象代表各个簇的均值(中心),猜测每一个簇的协方差矩阵,并假定初始状态 时每个簇的概率相等; 然后,根据多元高斯密度函数求出每一个对象属于每一个簇的概率,并求出数据的似然函数值;最后,根据每一个数据点属于每一个簇的概率,来更新每一个簇的均值,协方差矩阵,
转载 2023-08-02 23:25:26
149阅读
是一种无监督机器学习方法,可以从数据本身中识别出相似的数据点。对于一些算法,例如 K-means,需要事先知道有多少个。如果错误地指定了簇的数量,则结果的效果就会变得很差(参见图 1)。这种情况下,s 变为负数,接近 -1。在许多情况下,不知道数据中有多少个簇。但是弄清楚有多少簇可能是我们首先要执行操作的原因。如果有数据集相关的领域内知识可能有助于确定簇的数量。但是这假设需要知道目
  • 1
  • 2
  • 3
  • 4
  • 5