1.Transformations 转换算子概念: Transformations类算子是一类算子(函数)叫做转换算子,如map,flatMap,reduceByKey等。Transformations算子是延迟执行,也叫懒加载执行。Transformation类算子算子释义filter过滤符合条件的记录数,true保留,false过滤掉。map将一个RDD中的每个数据项,通过map中的函数映射
转载 2024-09-21 12:42:51
43阅读
Spark支持两个类型(算子)操作:Transformation和ActionTransformation主要做的是就是将一个已有的RDD生成另外一个RDD。Transformation具有lazy特性(延迟加载)。Transformation算子的代码不会真正被执行。只有当我们的程序里面遇到一个action算子的时候,代码才会真正的被执行。这种设计让Spark更加有效率地运行。常用的Transf
转载 2024-06-09 00:56:42
43阅读
Tensor      Pytorch是由numpy引出来的,Numpy is a generic framework for scientific computing; but it does not know anything about computation graphs, or deep learning      Numpy
转载 4月前
39阅读
文章目录1 问题:TensorRT暂时未实现einsum算子2 使用普通算子替代einsum操作的示例2.1 替换原理2.2 转换示例2.2.1 对torch.einsum("nctw,cd->ndtw",(a,b))的替代2.2.2 对torch.einsum('nkctv,kvw->nctw',(a,b))的替代2.2.3 对torch.einsum("bhnm,bdhm-&gt
在使用 PyTorch 进行深度学习研究时,重构算子的需求时常出现。但在将这些模型转移到 TensorRT 进行推理时,往往会面临一些问题。本文将详细记录如何处理“PyTorch 中重构的算子TensorRT 中的处理”这个问题的过程。 ## 问题背景 在深度学习模型开发过程中,使用 PyTorch 构建和训练模型的算子有时需要重构,以确保模型在推理过程中的高效性和兼容性。TensorRT
原创 7月前
57阅读
1.并行处理机制DataParallel系统通过将整个小型批处理加载到主线程上,然后将子小型批处理分散到整个GPU网络中来工作。具体是将输入一个 batch 的数据均分成多份,分别送到对应的 GPU 进行计算。与 Module 相关的所有数据也都会以浅复制的方式复制多份。每个 GPU 在单独的线程上将针对各自的输入数据独立并行地进行 forward 计算。然后在主GPU上收集网络输出,并通过将网络
论文思路在语义分割中,Attention机制的重要实现方法之一就是Non Local的方法,但是,Non Local的方法有一个比较大的问题,就是计算量偏大,像DANet,有一个比较大的计算量。而本文EMANet就提出了一种新的计算Attention的方法,并且解决了计算量大的问题。就是利用EM(Expectation-Maximization)算法来学习Attention特征。其中,E步学习At
TensorFlow发展及使用简介 2015年11月9日谷歌开源了人工智能系统TensorFlow,同时成为2015年最受关注的开源项目之一。TensorFlow的开源大大降低了深度学习在各个行业中的应用难度。TensorFlow的近期里程碑事件主要如下。2016年11月09日:TensorFlow开源一周年。2016年09月27日:TensorFlow支持机器翻译模型。2016年08月30
转载 8月前
28阅读
这是一篇pytorch与cuda结合的~~ 用PyTorch编译并调用自定义CUDA算子的三种方式:JIT、Setuptools、CMake。代码地址 https://github.com/godweiyang/torch-cuda-example运行环境NVIDIA Driver: 418.116.00CUDA: 11.0Python: 3.7.3PyTorch: 1.7.0+cu11
转载 2024-02-05 14:56:02
100阅读
上一篇博文介绍了win10 tensorrtx lenet使用方法,这里介绍Windows10下yolov5的TensorRT使用方法,官方的CmakeList默认是在linux环境下使用,我参考官方说明,修改了CmakeList,使其可以在windows10下快速构建TensorRT的MSVC工程,用于pytorch版yolov5的pt模型测试。1 环境硬件: CPU:Intel®Core™i5
在机器学习领域,PyTorchTensorRT 的结合为模型的推理性能提升提供了巨大的便利。然而,由于版本兼容性的问题,很多开发者在使用 PyTorch TensorRT 时遇到了各种困难。特别是在 2023 年,随着 PyTorch 的更新以及 TensorRT 的新版本发布,相关的兼容性问题变得愈发明显。接下来,我将记录我在解决“PyTorch TensorRT 版本”问题过程中的一些经
原创 7月前
150阅读
本文为Pyspark代码Spark版本:Spark-3.2.11. RDD的定义Spark提供了一种对数据的核心抽象,称为弹性分布式数据集(Resilient Distributed Dataset, RDD)。这个数据集的全部或部分可以缓存在内存中,并且可以在多次计算时重用。RDD其实就是一个分布在多个节点上的数据集合(一个数据集存储在不同的节点上,每个节点存储数据集的一部分)。RDD的主要特征
转载 2023-08-11 18:02:10
96阅读
1 TensorRT简介TensorRT的核心是一个c++库,它促进了对NVIDIA图形处理单元(gpu)的高性能计算。它与TensorFlow,Pytorch等框架相辅相成。他可以快速高效的运行一个已经训练好的神经网络,并生成结果。它包括用于从Caffe、ONNX或TensorFlow导入现有模型的解析器,以及用于以编程方式构建模型的c++和Python api。TensorRT在所有支持的平台
转载 2023-08-22 19:13:21
138阅读
         现有的网络上,主流的Mask RCNN主要有两个,一个是matterport的Keras版本https://github.com/matterport/Mask_RCNN,有13.5K的star,一个是facebookresearch的PyTorch版本6.2K的star,链接如下https://github.com/facebo
转载 2023-08-08 14:38:02
109阅读
Spark常用算子分析与应用1、算子概述什么是算子 英文翻译为:Operator(简称op)狭义:指从一个函数空间到另一个函数空间(或它自身)的映射。广义:指从一个空间到另一个空间的映射通俗理解:指事物(数据或函数)从一个状态到另外一个状态的过程抽象。实质就是映射,就是关系,就是变换。算子的重要作用 算子越少,灵活性越低,则实现相同功能的编程复杂度越高,算子越多则反之。 老手
转载 2023-12-25 13:01:08
92阅读
   本篇文章中,我们将一起学习OpenCV中边缘检测的各种算子和滤波器——Canny算子,Sobel算子,Laplace算子以及Scharr滤波器。文章中包含了五个浅墨为大家准备的详细注释的博文配套源代码。在介绍四块知识点的时候分别一个,以及最后的综合示例中的一个。文章末尾提供配套源代码的下载。 给大家分享一个OpenCv中写代码是节约时间的小常识。其实OpenCv
转载 2023-07-29 18:30:13
180阅读
在做毕设的时候需要实现一个PyTorch原生代码中没有的并行算子,所以用到了这部分的知识,再不总结就要忘光了= =,本文内容主要是PyTorch的官方教程的各种传送门,这些官方教程写的都很好,以后就可以不用再浪费时间在百度上了。由于图神经网络计算框架PyG的代码实现也是采用了扩展的方法,因此也可以当成下面总结PyG源码文章的前导知识吧 。第一种情况:使用PyThon扩展PyTorch
参照官方教程,实现pytorch自定义算子。主要分为以下几步:改写算子为torch C++版本注册算子编译算子生成库文件调用自定义算子一、改写算子这里参照官网例子,结合openCV实现仿射变换,C++代码如下:点击展开warpPerspective.cpp#include "torch/script.h" #include "opencv2/opencv.hpp" torch::Tensor w
转载 2023-05-26 16:40:55
642阅读
最近因为工作需要,学习了一波CUDA。这里简单记录一下PyTorch自定义CUDA算子的方法,写了一个非常简单的example,再介绍一下正确的PyTorch中CUDA运行时间分析方法。所有的代码都放在了github上,地址是:https://github.com/godweiyang/torch-cuda-example完整流程下面我们就来详细了解一下PyTorch是如何调用自定义的CUDA算子
autograd:自动求导PyTorch中所有神经网络的核心是autograd包。让我们先简单地看一下,然后我们来训练我们的第一个神经网络。autograd包为张量上的所有操作提供自动微分。它是一个按运行定义的框架,这意味着反向传播是由代码的运行方式定义的,并且每个迭代都是不同的。 神经网络的依赖于autograd去定义模型以及对这些模型求导。一个nn.Module包含了神经层和一个带有深入返回输
转载 2024-09-21 13:11:09
51阅读
  • 1
  • 2
  • 3
  • 4
  • 5