TensorFlow2的建模流程 1. 使用Tensorflow实现神经网络模型的一般流程 2. Titanic生存预测问题 2.1 数据准备 2.2 定义模型 2.3 训练模型 2.4 模型评估 2.5 使用模型 2.6 保存模型 参考资料 在机器学习和深度学习领域,通常使用TensorFlow来实现机器学习模型,尤其常用
转载 2024-03-19 00:09:13
187阅读
 小数量数据读取这些只用于可以完全加载到内存中的小型数据集:1,储存在常数中2,储存在变量中,初始化后,永远不改变它的值使用常量 training_data = ... training_labels = ... with tf.Session(): input_data = tf.constant(training_data) input_labels = tf.constan
文章目录: 目录1. 三种定义模型的方式2. 三种方式使用的优先级3. 三种模型的定义方式3.1 Sequential API3.2 Functional API3.3 Subclassing API4. 训练模式(training mode)和推理模式(inference mode)下模型的使用4.1 Keras Sequential 方式构建的模型4.2 Keras Functional AP
作者:何之源 Dataset API是TensorFlow 1.3版本中引入的一个新的模块,主要服务于数据读取,构建输入数据的pipeline。 此前,在TensorFlow中读取数据一般有两种方法: 使用placeholder读内存中的数据 使用queue读硬盘中的数据(关于这种方式,可以参考我之前的一篇文章:十图详解tensorflow数据读取机制) 像Dataset API同时支持从内存
0. 前提本文针对场景识别,其中采用的模型是mobilenet_v2,如有需要,可替换成其他tf-slim支持模型;1. 准备工作(1)tf-slim源码git clone 官方代码仓:https://github.com/tensorflow/models(2)准备完成自己的场景数据集我的数据集结构如下:2. 将数据集转成tfrecord格式操作均在slim文件夹下 (1)在datasets文件
由于很多时候我们在一个新的网络中只会用到一个已训练模型的部分参数,即迁移学习。 那么,如何加载已训练模型的部分参数到当前网络。一、当前网络加载已训练模型相同name scope的变量方法1. 手动构建与预训练一样的部分图将需要fine tune的变量的name scope命名为与模型中的name scope相同,然后使用如下代码将模型参数加载到当前网络。tf.train.Saver([var fo
数据读取TensorFlow程序读取数据一共有3种方法:供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据。从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。目录数据读取供给数据(Feeding)从文件读取数据 文件
转载 11月前
50阅读
前段时间实践tensorflow目标检测模型再训练,过程见博文tf2目标检测-训练自己的模型总结目标检测模型再训练过程,有以下几点需注意:1 训练集和测试集训练图片每张只包含一个目标,因此可用小尺寸图片,且统一训练图片大小,有助于加快训练过程。测试图片则用大图片,包含多个需检测目标,同时包括应排除的目标,检验模型训练成果。2 模型处理窗口和输入图片resize问题每个再训练模型有处理窗口,例如ss
转载 2024-04-24 16:05:34
72阅读
文章目录Tensorflow Serving实战安装Tensorflow serving准备YOLOX模型部署YOLOX模型测试YOLOX模型模型多版本部署模型的热部署参考 Tensorflow Serving使用Tensorflow框架训练好模型后,想把模型部署到生产环境可以使用Tensorflow Serving进行部署。Tensorflow Serving具有以下作用:兼容Tensorf
本篇介绍函数包括: tf.conv2d tf.nn.relu tf.nn.max_pool tf.nn.droupout tf.nn.sigmoid_cross_entropy_with_logits tf.truncated_normal tf.constant tf.placeholder tf.nn.bias_add tf.reduce_mean tf.squared_d
转载 2024-02-22 00:49:25
37阅读
cifar10训练数据集下载链接:https://pan.baidu.com/s/1Qlp2G5xlECM6dyvUivWnFg 提取码:s32t代码解析前置配置引入tensorflow库,和其他辅助库文件。安装方式为pip3 install tensorflow numpy pickle。详细过程不在这里描述。 在这里,训练和测试数据集文件放在该脚本的父文件夹中,因此按照实际情况来对CIFAR_
tensorflow实现线性回归模型1.变量(1)变量的创建(2)变量的初始化(3)变量的作用域2.可视化学习Tensorboard(1)开启tensorboard(2)增加变量显示3.tensorflow实现线性回归实战(1)Tensorflow运算API(2)梯度下降API(3)实现线性回归4.模型加载和保存5.命令行参数 1.变量(1)变量的创建变量也是一种OP,是一种特殊的张量,能够进行
  TensorFlow提供了一个非常简单的API来保存和还原一个神经网络模型。这个API就是tf.train.Saver类。以下代码给出了保存TesnsorFlow计算图的方法。import tensorflow as tf #声明两个变量并计算他们的和 v1 = tf.Variable(tf.constant(1.0, shape = [1]), name = "v1") v2 = tf.V
转载 2024-06-07 05:52:46
30阅读
文章目录1.编译Tensorflow源码1.1 使用开源文件2.C++调用tensorflow model遇到的问题参考文章 最近在研究如何用C++ 调用基于python库训练的tensorflow模型,完成模型预测。具体步骤如下: 在python中,用tensorflow的python库,训练模型,并生成pb文件;准备好tensorflow的c++库(重点);在c++中用tensorflow
转载 2023-12-24 13:37:52
95阅读
用过 TensorFlow 时间较长的同学可能都发现了 TensorFlow 支持多种模型格式,但这些格式都有什么区别?怎样互相转换?今天我们来一一探索。1. CheckPoint(*.ckpt)在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“checkpoint”,如下图所示:这种格式文件是由 tf.train.Saver() 对象调用 saver.save()
转载 2024-03-28 09:21:00
44阅读
在所有的数据都处理完了之后,接下来就可以进行模型的训练了。在Github上FaceNet项目的介绍中有softmax和论文中提到的三元损失训练triplet两种方式,这边简单的介绍下softmax的训练方法。FaceNet已经将所有的方法都已经封装好,训练程序在src目录下的train_softmax.py文件中,在训练之前,我们首先要简单的修改下这份文件,让它适用于当前版本。找到260行,搜索i
在开始正题之前,先介绍一下Tensorflow-hub, Tensorflow-hub 是 google 提供的机器学习模组打包函式库,帮开发者把TensorFlow的训练模型发布成模组,方便再次使用或是与社交共享。目前官网上已经发布了不少模组,可以直接下载使用。在之前博客【Tensorflow2.*教程之使用Tensorflow Hub 对IMDB电影评论数据集进行文本分类(2)】中也使用到Te
文 /  李锡涵,Google Developers Expert在上一篇文章中,我们介绍了 tf.config 的使用方式,至此 TF2.0 中常用模块已经介绍完毕。 接下来我们将介绍 TensorFlow模型的部署与导出,本文介绍使用 SavedModel 完整导出模型。 使用 SavedModel 完整导出模型在部署模型时,我们的第一步往往
NVIDIA DLI 深度学习入门培训 | 特设三场!! 4月28日/5月19日/5月26日 正文共7797个字,13张图,预计阅读时间18分钟。本篇文章有2个topic,简单的分类器和TensorFlow。首先,我们会编写函数生成三种类别的模拟数据。第一组数据是线性可分的,第二种是数据是月牙形数据咬合在一起,第三种是土星环形数据。每组数据有两个类型,我们将分别建立模型,对每组数
转载 2024-05-27 10:24:32
50阅读
简介ONNX 开放神经网络交换(Open Neural Network Exchange)简称ONNX是微软和Facebook提出用来表示深度学习模型的开放格式。所谓开放就是ONNX定义了一组和环境,平台均无关的标准格式,来增强各种AI模型的可交互性。ProtoBuf 简介ONNX 使用的是 Protobuf 这个序列化数据结构去存储神经网络的权重信息。Protobuf 是一种轻便高效的结构化数据
  • 1
  • 2
  • 3
  • 4
  • 5