文章目录data模块的使用基础api的介绍csv文件tfrecord data模块的使用在训练的过程中,当数据量一大的时候,我们纯读取一个文件,然后每次训练都调用相同的文件,然后进行处理是很不科学的,或者说,当我们需要进行多次训练的时候,我们实际上可以将数据先切分,打乱到对应的位置,然后存储到文件夹当中,下次读取然后进行训练。这样子也可以避免一下子加载太多的数据。(这对于大数据的图像切割领域尤其重
OptimizerStochastic Gradient Descent (SGD)基础方法,是mini batch中的一种,加了随机Momentum 即原始的加上一个负的学习效率乘上一个矫正值 数学公式如下: 一定程度上保留之前更新的方向(像一个醉汉,随着坡度的变大,随着惯性,下降的方向越来越笔直)AdaGrad数学公式如下: 相较Momentum,AdaGrad会自动调整learnin rat
转载 2024-02-22 14:22:42
167阅读
Tensorflow API: tf.data.Dataset使用Tensorflow中之前主要用的数据读取方式主要有:建立placeholder,然后使用feed_dict将数据feed进placeholder进行使用。使用这种方法十分灵活,可以一下子将所有数据读入内存,然后分batch进行feed;也可以建立一个Python的generator,一个batch一个batch的将数据读入,并将其
背景使用BERT-TensorFlow解决法研杯要素识别任务,该任务其实是一个多标签文本分类任务。模型的具体不是本文重点,故于此不细细展开说明。本文重点阐述如何部署模型。模型部署官方推荐TensorFlow模型在生产环境中提供服务时使用SavedModel格式。SavedModel格式是一种通用的、语言中立的、密闭的、可恢复的TensorFlow模型序列化格式。SavedModel封装了Tenso
转载 2024-03-28 10:40:30
74阅读
## 如何在Python2打印变量 ### 一、流程图 ```mermaid stateDiagram [*] --> 开始 开始 --> 输入变量 输入变量 --> 打印变量 打印变量 --> 结束 结束 --> [*] ``` ### 二、步骤及代码示例 | 步骤 | 操作 | 代
原创 2024-06-04 04:46:50
62阅读
在上一篇文章中,我们介绍了高效的数据流水线模块 tf.data 的流水线并行化加速。本篇文章我们将介绍 TensorFlow 另一个数据处理的利器——TFRecord。TFRecord :TensorFlow 数据集存储格式TFRecord 是 TensorFlow 中的数据集存储格式。当我们将数据集整理成 TFRecord 格式后,TensorFlow 就可以高效地读取和处理这些数据集,从而帮助
转载 2024-04-15 09:54:39
53阅读
## Python3打印文件内容的步骤 作为一名经验丰富的开发者,我将教会你如何使用Python3来打印文件的内容。下面是整个流程的步骤表格: | 步骤 | 描述 | | --- | --- | | 步骤1 | 打开文件 | | 步骤2 | 读取文件内容 | | 步骤3 | 关闭文件 | | 步骤4 | 打印文件内容 | 下面我会逐步解释每个步骤,并提供相应的代码示例。 ### 步骤1:
原创 2023-09-05 15:51:43
197阅读
硬件 i7-10700K+RTX2080S软件Win10Miniconda3-py37_4.8.2-Windows-x86_64cuda10.1cudnn7.6.5tensorflow2.3.0安装过程网上看到很多教程都是先把CUDA、cuDNN安装下来再一步步安装。流程没毛病,不过,英伟达的官网就有点恶心,奇慢无比,还时不时的打不开,好不容易打开了网页,下载又下载不下来,要么就一动不动
数据管道Dataset1.Dataset类相关操作1.1 Dataset类创建数据集1.2 Dataset类数据转换 知识树 1.Dataset类相关操作1.1 Dataset类创建数据集tf.data.Dataset 类创建数据集,对数据集实例化。 最常用的如:tf.data.Dataset.from_tensors() :创建Dataset对象, 合并输入并返回具有单个元素的数据集。tf.
一、《深度学习之Tensorflow入门原理与进阶实战》1、第三章import tensorflow as tf import numpy as np import matplotlib.pyplot as plt trainx=np.linspace(-1,1,100) trainy=2*trainx+np.random.randn(*trainx.shape)*0.3 #y=2x with
转载 2024-05-25 16:55:42
130阅读
菜鸟学TensorFlow 2.0:TensorFlow2.0基础操作演示1. Tensor数据类型2. 创建Tensor3. Tensor索引和切片4. Tensor维度变换5. Broadcast6. 数学运算7. 手写数字识别流程8. TensorFlow实现神经网络参考资料 1. Tensor数据类型TensorFlow没有那么神秘,为了适应自动求导和GPU运算,它应运而生。为了契合nu
Tensorflow2自定义Layers之__init__,build和call详解闲言碎语:--init--,build和call总结 参考官方链接:https://tensorflow.google.cn/tutorials/customization/custom_layers闲言碎语:如果想要自定义自己的Layer,那么使用tf.keras.Layer 来创建自己的类是必不可少的。但是笔
Python打印方法总结及实例分享本文为大家分享了Python实现全排列的打印的代码,供大家参考,具体如下问题:输入一个数字:3,打印它的全排列组合:123 132 213 231 312 321,并进行统计个数。下面是Python的实现代码:#!/usr/bin/env python # -*- coding: -*- ''' 全排列的demo input : 3 output:123 132
1. 前言:自从Google发布了TensorFlow2.0后,个人觉得与TensorFlow1相比是一个重大的突破,它不仅仅删除了许多旧的库并进行整合,还促进了Keras在搭建模型中的使用,通过高级API Keras让模型构建和部署变得简单。 我们在用TensorFlow2.0创建模型时,可以使用Keras函数API定义模型或者顺序API定义模型。本文将使用Keras函数API来定义CNN模型,
转载 2024-04-03 12:54:45
37阅读
前文:三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署TensorFlow 模型导出 使用 SavedModel 完整导出模型不仅包含参数的权值,还包含计算的流程(即计算图)tf.saved_model.save(model, "保存的目标文件夹名称")将模型导出为 SavedModelmodel = tf.saved_model.load("保存的目标文件夹名
转载 2024-05-13 12:55:58
0阅读
机器学习问题不仅是一个科学问题,更是一个工程问题。大多数年轻的数据科学家都希望将大部分时间花在构建完美的机器学习模型上,但是企业不仅需要训练一个完美的模型,同时也需要将其部署,向用户提供便捷的服务。如下图所示,机器学习系统由机器学习代只包含一小部分,而在中间的小黑匣子周围,所需要的基础设施庞大而复杂。因此,在实际应用中,一个优秀的程序员不仅要学会构建完美的机器学习模型上,同时还需要将其部署向用户提
1 配置环境首先确保已经配置好tensorflow2和cuda、cudnn环境,不要下载错。配置的教程已经有很多,自行查阅2 安装APItf2 object detection 的安装参考此博客,TensorFlow 2 Object Detection API 物体检测教程 虽然这是linux系统下的,但是操作可以类比。简单地说只有三步 1.下载model-master并解压 其中tensorf
转载 2024-05-06 14:49:06
128阅读
#include<stdio.h> int main() { printf(" O O\n"); printf("<H> <H>\n"); printf("I I I I\n"); return 0; } ...
转载 2021-10-27 11:22:00
91阅读
2评论
文章目录1. 基础知识1.1 张量生成1.2 常用函数1.3 实例: 鸢尾花分类2. 神经网络的优化过程(手工实现)2.1 预备知识2.2 神经网络复杂度2.3 激活函数2.4 损失函数2.5 缓解过拟合2.6 优化器3. 搭建网络(内置八股方式)3.1 基础八股3.2 搭建网络结构类4. 搭建网络(进阶)4.1 自制数据集4.2 数据增强4.3 断点续训4.4 参数提取4.5 acc曲线与los
转载 2024-05-01 14:29:32
39阅读
进行学习首先需要明确TensorFlow 是一个面向于深度学习算法的科学计算库,内部数据保存在张量(Tensor)对象上,所有的运算操作(Operation, OP)也都是基于张量对象进行。数据类型Tensorflow中的基本数据类型有三种,包括数值型、字符串型和布尔型。【数值型】又包括:(在 TensorFlow 中间,为了表达方便,一般把标量、向量、矩阵也统称为张量,不作区分,需要根据张量的维
转载 2024-05-14 22:16:44
95阅读
  • 1
  • 2
  • 3
  • 4
  • 5