​ 还是以在谷歌colab上为例:cd /content/drive/My Drive/pytorch_ssd导入相应的包:import osimport sysmodule_path = os.path.abspath(os.path.join('..'))if module_path not in sys.path: sys.path.append(module_path)import
转载 2020-03-23 16:14:00
394阅读
2评论
文章目录前言一、可视化网络结构7.1.1 使用print函数打印模型基础信息7.1.2 使用torchinfo可视化网络结构二、CNN可视化7.2.1 CNN卷积核可视化7.2.2 CNN特征图可视化方法7.2.3 CNN class activation map可视化方法7.2.4 使用FlashTorch快速实现CNN可视化三、使用TensorBoard可视化训练过程7.3.1 Tensor
目录TensorBoardCreate a summary writerGeneral api formatAdd scalar`add_scalar``add_scalars`Add graph (visualize a model)Add histogramAdd imageadd_imagetorchvision.utils.make_gridadd_imagesAdd figureAdd
1) 可视化模型结构from torchviz import make_dot model = ResNet18() print(model) #输出模型的详细信息 x = torch.randn(1,3,32, 32).requires_grad_(True) y = model(x) vis_graph = make_dot(y, params=dict(list(model.named
转载 2024-01-13 21:58:43
83阅读
如果我们实现了一个 CNN 网络,在 mnist 上通过两个卷积层完成分类识别。但是在我们调试代码的过程中,其实往往会想要知道我们的网络训练过程中的效果变化,比如 loss 和 accuracy 的变化曲线。当然,我们可以将训练过程中的数据数据打印出来,但是一个是不够直观,另外一个是没有图形的表现力强。所以本篇笔记介绍了 tensorboard 来完成可视化的操作。1. TensorBoard 介
转载 2024-01-16 04:20:27
122阅读
1.可视化网络结构网络结构的日益复杂使得我们在设计和调试算法的时候越来越难直接通过代码来确定神经网络的内部结构、输入输出以及参数等信息。因此,我们需要借助图形的交互工具来辅助我们完成神经网络结构设计和神经网络训练调试。在Tensorflow中,我们可以使用tensorflow.summary来记录网络结构,并通过Tensorboard对网络结构进行显示,通过可视化地查看网络结构辅助我们对神经网络
基于pytorch的网络结构可视化前言 之前实现了一些常见的网络架构,但是有些网络架构并没有细说,并且网络传输过程中shape的变化也很少谈及过。 除此之外,前面的实现很少涉及到可视化的内容,比如损失值的可视化、网络结构的可视化。 所以本期博客就是补充一下这几点。目录结构 文章目录基于pytorch的网络结构可视化1. 安装:2. summary使用方法:3. tensorboardX使用方法:4
转载 2024-08-27 15:10:32
75阅读
和之前学习Pandas一样,我们继续以宝可梦数据集作为学习可视化的例子,进而梳理Python绘图的基本操作,主要涉及seaborn以及matplotlib两个可视化库。上半部分我们主要使用matplotlib来进行柱状图、散点图、饼图折线图等的绘制,下半部分主要使用seaborn来进行箱线图、小提琴图、分簇散点图、热力图等的绘制。首先我们回顾一下整个数据集,列名依次为名字、类型一、类型二、总计值、
# PyTorch网络可视化 在深度学习中,神经网络是非常常见的模型。PyTorch是一个流行的深度学习框架,提供了方便的工具来构建和训练神经网络模型。然而,在实际应用中,我们经常需要了解网络的结构和参数,以便进行调试和优化。网络可视化是一种常见的技术,可以帮助我们直观地了解网络的结构和运行过程。本文将介绍如何使用PyTorch可视化神经网络。 ## PyTorch和Torchvision
原创 2023-07-23 09:15:05
170阅读
# PyTorch 特征可视化:探索深度学习模型的“黑盒子” 深度学习模型,尤其是卷积神经网络(CNN),在图像识别、自然语言处理等领域取得了显著的成果。然而,这些模型的内部工作机制往往被视为“黑盒子”,难以理解。为了揭示这些模型的工作原理,特征可视化成为了一种重要的手段。本文将介绍如何使用 PyTorch 进行特征可视化,并展示一些代码示例。 ## 特征可视化的意义 特征可视化可以帮助我们
原创 2024-07-18 04:17:30
99阅读
一、前言  在深度学习模型训练的过程中,常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等。在Tensorflow中,最常使用的工具非Tensorboard莫属;在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom。visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好。
本文最初发布于Anaconda开发者博客,经原作者授权由InfoQ中文站翻译并分享。在奥斯汀举行的SciPy 2018年特别会议上,大量开源Python可视化工具的代表分享了他们对Python数据可视化未来的展望。我们看到了Matplotlib、Plotly、VisPy等许多库的更新。我作为PyViz、GeoViews、Datashader、Panel、hvPlot和Bokeh的代表参加了SciP
引导基本情况安装 hiddenlayer检查是否安装成功查看网络结构可能遇到的问题 基本情况pytorch == 1.1.0 torchvision == 0.3.0 hiddenlayer == 0.2 提前说:做好版本之间的匹配能避免很多错误,少走很多弯路。安装 hiddenlayer打开 Anaconda Prompt 进入自己的 pytorch 环境,运行代码安装 hiddenlayer
# PyTorch卷积可视化 PyTorch是一个开源的深度学习框架,它提供了丰富的功能来构建和训练神经网络模型。在深度学习中,卷积神经网络(Convolutional Neural Network,CNN)是一种常用的模型结构,用于图像识别、目标检测等任务。在PyTorch中,我们可以通过可视化卷积过程来更好地理解模型的工作原理。 ## 卷积神经网络简介 卷积神经网络是一种专门设计用于处理
原创 2024-03-23 04:21:49
161阅读
# pytorch 模型可视化 ## 概述 在机器学习领域,pytorch 是一种常用的深度学习框架。训练好的模型需要进行可视化才能更好地理解和分析。本文将介绍如何使用 pytorch 实现模型可视化的过程和方法。 ## 总体流程 下面是实现 pytorch 模型可视化的总体流程: ```mermaid journey title pytorch 模型可视化 section
原创 2023-09-13 16:58:11
302阅读
作者 | 法纳斯特之前讲了代理池以及Cookies的相关知识,这里针对搜狗搜索微信文章的爬取,将它俩实践一下。在崔大的书里面,他是用代理IP来应对搜狗的反爬措施,因为同一IP访问网页过于频繁,就会跳转验证码页面。不过时代在进步,搜狗搜索的反爬也在更新,现在它是IP加Cookies双重把关。/ 01 / 网页分析获取章信息,标题、开头、、发布时间。请求方式为GET,请求网址为红框部分,后面的信息没什
转载 1月前
17阅读
文章目录训练代码tensorboardx可视化代码 训练代码导入数据部分train_data = torchvision.datasets.MNIST( root="./data/FashionMNIST", train=True, transform=torchvision.transforms.ToTensor(), download=False ) trai
一、Bokeh的介绍对于Python的可视化有多种库可以供我们使用,今天将要介绍Python中交互式可视化库Bokeh。我们可以用它绘制折线图、条形图、直方图、散点图、热力图等。相对于其他库,Bokeh最大的特点就在于它的交互性,用户可以通过滚轮、拖拽、点击、滑动等方式对数据进行缩放、选择、平移、悬停等操作来研究与分析,并且适合大数据集的可视化,将数据直接复制到浏览器中,直接在web浏览器中展示图
摘要:网络训练过程的可视化主要是帮助使用者监督所搭建的网络的训练过程,以期获得更有效的训练效果。在4.1中我们已经定义了一个简单的卷积神经网络,本节中我们将以该网络为例使用HiddenLayer库来可视化网络的训练过程。一、搭建网络结构(同4.1内容)        由于内容与4.1节基本相同,因此不过多赘述,代码如下:#导入相关库和数据 import to
TensorBoard是一款优秀的基于浏览器的机器学习可视化工具。之前是tensorflow的御用可视化工具,由于tensorboard并不是直接读取tf张量,而是读取log进行可视化。所以,其他框架只需生成tensorboard可读的log,即可完成可视化。之前,我一
原创 2022-11-10 10:08:54
349阅读
  • 1
  • 2
  • 3
  • 4
  • 5