出品:贪心科技
作者: 山南 阅读人群:想了解卷积神经网络基本概念 1.1 背景2.1 神经网络 2.1.1 感知机2.1.2 激活函数2.1.3 反向传播2.2 卷积的定义2.3 卷积的Stride步长2.4 Padding2.5 Pooling池化层2.6 ReLU(Rectified Linar Unit)修正线性单元2.7 Dropout2.8 So
转载
2023-10-13 00:00:26
336阅读
深度学习是一种人工智能技术,它用于解决各种问题,包括自然语言处理、计算机视觉等。递归神经网络(Recurrent Neural Network,RNN)是深度学习中的一种神经网络模型,主要用于处理序列数据,例如文本、语音、时间序列等。本文将详细介绍递归神经网络的原理、结构和应用。递归神经网络的原理递归神经网络是一种有向图模型,在每个时间步都接收输入和隐状态,并输出一个隐状态和一个输出。递归神经网络
转载
2023-08-08 20:33:01
313阅读
深度学习概述理论上来说,参数越多的模型复杂度越高、容量越大,这意味着它能完成更复杂的学习任务。但一般情形下,复杂模型的训练效率低,易陷入过拟合。随着云计算、大数据时代的到来,计算能力的大幅提高可以缓解训练的低效性,训练数据的大幅增加可以降低过拟合风险。因此,以深度学习(Deep Learning,DL)为代表的复杂模型受到了关注深度学习是机器学习(Machine Learning,ML)领域中一个
转载
2023-11-27 11:19:41
2阅读
多层网络的学习能力比单层感知机强很多,要训练多层网络,简单的感知机学习规则显然不够,需要更强大的学习算法。误差逆传播(Error BackPropagation)算法就是学习算法中的杰出代表。现实任务中使用神经网络时,大多是使用BP算法进行训练。需要注意的是,BP算法不仅可以用于多层前馈神经网络,还可以用于其他类型的神经网络。通常说BP网络时,常指利用BP算法训练的多层前馈神经网络。
转载
2023-01-11 11:19:53
324阅读
神经网络算法可以解决的问题有哪些人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特点。BP(Back Propagation)算法又称为误差 反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理 论上可以
转载
2023-06-30 21:06:23
114阅读
神经网络应用场景 (1)语音识别自2006 年Hinton等提出深度学习的概念,神经网络再次回到人们的视野中,语音识别是第1个取得突破的领域。传统语音识别的方法主要利用声学研究中的低层特征,利用高斯混合模型进行特征提取,并用隐马尔可夫模型进行序列转移状态建模,并据此识别语音所对应的文字。历经数十年的发展,传统语音识别任务的错误率改进却停滞不前,停留在25% 左右,难以达到实用水平。2013 年,H
转载
2023-08-08 17:50:48
78阅读
在本文中,我们主要关注模型的应用,而具体的网络设计并不是我们这里特别感兴趣的。社会影响的预测社会影响预测侧重于朋友之间行为的影响,尤其是在社交网络中。例如,如果一些社交网络上的朋友买了一件衣服,他/她会不会也买呢?以社交图作为输入,DeepInf为用户学习网络嵌入(一种潜在的社会表征)。结合下面(d)中手工制作的特征,对社会影响进行预测,比如v是否也会观看广告片段(步骤f)。在训练过程中,将预测结
转载
2023-08-10 11:24:28
176阅读
图神经网络是什么?谷歌人工智能写作项目:小发猫为什么有图卷积神经网络?本质上说,世界上所有的数据都是拓扑结构,也就是网络结构,如果能够把这些网络数据真正的收集、融合起来,这确实是实现了AI智能的第一步rfid。所以,如何利用深度学习处理这些复杂的拓扑数据,如何开创新的处理图数据以及知识图谱的智能算法是AI的一个重要方向。深度学习在多个领域的成功主要归功于计算资源的快速发展(如GPU)、大量训练数据
转载
2023-10-26 17:24:00
79阅读
文章RNN(Recurrent Neural Network)长短时记忆网络LSTM RNN(Recurrent Neural Network)RNN称为循环神经网络或者递归神经网络。在过去几年RNN在语言识别,自然语言处理,翻译以及图像描述等领域有着非常好的应用。处理图片分类的时候,可以把图片一张一张放入分类器中独立进行判断。但是处理语音以及文字的时候,不能把发音独立,也不能把文字独立,要连起
转载
2023-06-05 21:56:57
234阅读
人工神经网络的应用人工神经网络(Artificial Neural Network,简称ANN ),以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。人工神经网络具有自学习、自组织、自适应以及很强的非线性函数逼近能力,拥有强大的容错性。它可以实现仿真、预测以及模糊控制等功能。是处理非线性系统的有力工具。它是物流合作伙伴选择方法中合作伙伴选择的神经网络算法的另一种名
转载
2023-10-30 23:09:23
255阅读
简 介: 行人轨迹预测是缓解交通拥堵、优化智能汽车驾驶决策的重要依据,在自动驾驶和智慧交通上有着广泛的应用前景。但在交通场景中,行人的运动轨迹不仅会受到本身意图的影响,还会受到周围行人、车辆的影响,所以行人轨迹预测成为一项极具挑战性的工作。人工神经网络是一种人为建立的用于复杂模式和预测问题的数学模型,能够模仿脑部神经系统的某些机制并具有强大的时序序列信息处理能力,这些特性也恰好满足了行人轨迹预测任
转载
2024-01-13 18:01:29
83阅读
1、什么是神经网络,举例说明神经网络的应用我想这可能是你想要的神经网络吧! 什么是神经网络: 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而
转载
2023-10-31 19:19:39
78阅读
现代控制理论的发展1.智能控制(IntelligentControl)智能控制是人工智能和控制的结合物,是一类无需人的干预就能够独立地驱动智能机器,实现其目标的控制。智能控制的注意力并不放在对数学公式的表达、计算和处理上,而放在对任务和模型的描述,符号和环境的识别以及知识库和推理机的设计开发上。智能控制用于生产过程,让计算机系统模仿专家或熟练操作人员的经验,建立起以知识为基础的广义模型,采
转载
2023-10-31 21:59:55
83阅读
神经网络算法实例说明有哪些?在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。卷积神经网络通俗理解人体神经网络
转载
2023-08-14 16:58:03
116阅读
大家好,今天和各位分享一下如何使用 Tensorflow 构建 CNN卷积神经网络和 LSTM 循环神经网络相结合的混合神经网络模型,完成对多特征的时间序列预测。本文预测模型的主要结构由 CNN 和 LSTM 神经网络构成。气温的特征数据具有空间依赖性。本文选择通过在模型前端使用CNN卷积神经网络提取特征之间的空间关系。同时,气温数据又具有明显的时间依赖性,因此在卷积神经网络后添加 LSTM 长短
转载
2023-08-11 09:24:55
210阅读
目前,互联网、大数据、人工智能等新技术越来越深度地进入到日常生活中。人们投入到社交网络、网络游戏、电子商务、数字办公的时间不断增多。个人也越来越多地以数字身份出现在社会生活中。可以想象,除去睡眠等无效时间,如果人类每天在数字世界活动的时间超过了有效时间的50%,那么人类的数字化身份,会比物理世界的身份更为真实有效。科幻片中的“数字孪生“,正快速地成为现实。企业领域的“数字孪生“,目前多指利用物联网
转载
2024-02-29 09:56:37
53阅读
DNN(Deep Neural Network)神经网络模型又叫全连接神经网络,是基本的深度学习框架。与RNN循环神经网络、CNN卷积神经网络的区别就是DNN特指全连接的神经元结构,并不包含卷积单元或是时间上的关联。1、梳理一下DNN的发展历程神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层
转载
2024-03-05 13:04:42
257阅读
什么是神经网络控制技术神经网络控制技术是一项复杂的系统控制技术,一般应用在变频器的控制中,它是通过对系统的辨识、运算后对变频器进行控制的一种新技术。而且神经网络控制可以同时控制多个变频器,所以应用在多个变频器级联控制中比较合适。计算机神经网络控制系统能干嘛?具有模仿人的大脑判断能力和适应能力、可并行处理多种数据功能的神经网络计算机,可以判断对象的性质与状态,并能采取相应的行动,而且可同时并行处理实
转载
2023-08-14 14:28:26
104阅读
Spiking-YOLO:Spiking Neural Network for Energy-Efficient Object Detection主要贡献:1.第一次将深度SNN应用到目标检测领域2.channel-wise normalization (一种新的标准化方法,方便数据的处理)3.signed neuron with imbalanced threshold (一种新的激活函数)bas
转载
2023-09-06 13:16:35
163阅读
文章目录前言卷积层池化层全连接层注: 前言之前曾讲到过分类问题,回归问题等等。但是都是简要概括,只讲了数据有无标签等等,关于如何对数据进行处理以及提取数据中的信息的基础知识将在本博客中介绍。而卷积神经网络是深度学习的代表算法之一,通常用于提取数据的表征信息。最早提出于二十世纪八九十年代,后由于硬件设备算力的提升,卷积网络得到快速发展,并被应用于计算机视觉与自然语言处理等领域。卷积层卷积运算的目的
转载
2023-11-10 12:23:03
83阅读