RBF神经网络典型案例分析【例6-1】考虑具有3输入2输出的一组数据,如表6-1所示。>> clear all;
xite=0.10;alfa=0.05;
W=rands(5,2);
W_1=W;W_2=W_1;
h=[0,0,0,0,0]';
c=2*[-0.5 -0.25 0 0.25 0.5;-0.5 -0.25 0 0.25 0.5;-0.5 -0.25 0 0.25 0.5]
转载
2023-07-28 21:10:05
317阅读
一、多层前向神经网络多层前向神经网络由三部分组成:输出层、隐藏层、输出层,每层由单元组成;输入层由训练集的实例特征向量传入,经过连接结点的权重传入下一层,前一层的输出是下一层的输入;隐藏层的个数是任意的,输入层只有一层,输出层也只有一层;除去输入层之外,隐藏层和输出层的层数和为n,则该神经网络称为n层神经网络,如下图为2层的神经网络;一层中加权求和,根据非线性方程进行转化输出;理论上,如果有足够多
转载
2023-09-12 08:58:05
99阅读
华夏35度Data Mining RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近、时间序列分析、数据分类、模式识别、信息处理、图像处理、系统建模、控制和故障诊断等。简单说明一下为什么RBF网络学习收敛得比较快。当网络的一个或多个可调参数(权值或阈值)对任何一个输出都有影响时,这样的网络称为全局
转载
2023-10-31 23:42:44
133阅读
再论RBF神经网络 前言:在此之前也看了不少的博文,但是总是觉得相同的概念不同的博文表达总是不同,同样的RBF神经网路,不同的博文会总结出不同的网络结构,再此还是自己总结一下比较好。本文参考:《Matlab神经网络原理与实例精解》一、RBF神经网络的特点 1、结构简单、收敛速度快、能够逼近任意非线性函
转载
2023-06-25 09:47:21
663阅读
一、RBF神经网络1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function,RBF)方法,1988年, Moody和Darken提出了一种神经网络结构,即RBF神经网络。RBF网络是一种三层前向网络,其基本思想是:(1)用RBF作为隐单元的“基”构成隐含层空间,将输入矢量直接(即不需要通过权连接)映射到隐空间(2)当RBF的中心点确定后,映射关系也就确定(
转载
2023-08-28 13:38:50
129阅读
RBF网络原理RBF网络,即径向基神经网络,也是前馈型网络的一种。它的设计思想和BP网络完全不一样。Cover定理:将复杂的模式分类问题非线性的投射到高维空间将比投射到低维空间更可能是线性可分的。也就是说这个问题在低维空间不一定是线性可分的,但如果把它映射到高纬度的空间去,在那里就可能是线性可分的。这就是RBF网络的原理。RBF将问题转换为线性可分之后便没有了BP网络的局部极小值问题。但是RBF需
转载
2023-12-11 16:36:11
70阅读
径向基函数(Radial Basis Function,RBF)是一个取值仅取决于到原点距离的实值函数,也可以是到任意一中心点的距离,任何一个满足上述特性的函数都可以称为RBF。我们可以从网上看到许多的RBF神经网络的介绍,这里就不再过多的进行阐述了,主要来说下RBF神经网络的相关问题。(1)RBF神经网络输入层到隐含层不是通过权值和阈值进行连接的,而是通过输入样本与隐含层节点中心之间的距离连接的
转载
2023-08-18 19:49:44
138阅读
前言:好久不见了,最近一直瞎忙活,博客好久都没有更新了,表示道歉。希望大家在新的一年中工作顺利,学业进步,共勉!今天我们介绍深度神经网络的缺点:无论模型有多深,无论是卷积还是RNN,都有的问题:以图像为例,我们人为的加一些东西,然后会急剧的降低网络的分类正确率。比如下图:在生成对抗样本之后,分类器把alps 以高置信度把它识别成了狗,下面的一幅图,是把puffer 加上一些我们人类可能自己忽视的东
转载
2024-02-05 02:31:19
65阅读
一、萤火虫算法FA萤火虫算法(Firefly Algorithm,FA)是Yang等人于2009年提出的一种仿生优化算法。参考文献:田梦楚, 薄煜明, 陈志敏, et al. 萤火虫算法智能优化粒子滤波[J]. 自动化学报, 2016, 42(001):89-97.二、RBF神经网络1988年,Broomhead和Lowc根据生物神经元具有局部响应这一特点,将RBF引入神经网络设计中,产生了RBF
转载
2024-02-05 14:07:42
181阅读
目录一、RBF神经网络基本原理二、模型建立三、RBF网络拟合结果分析四、注意事项五、参考文献六、Matlab代码获取 一、RBF神经网络基本原理1988年Broomhead和Lowe将径向基函数(radial basis function, RBF)引入神经网络,形成了RBF神经网络。RBF神经网络是一种三层的前馈网络, 其基本思想是:利用RBF作为隐单元的“基”构成隐含层空间,把低维的输入矢量
转载
2023-07-07 16:49:30
478阅读
最近学习了一下神经网络,主要是学习了BP和RBF,下面时本人的学习笔记学习尚浅,望指正..... 本篇介绍BP神经网络,下一篇介绍RBF神经网络BP神经网络就是Back Propagation(反向传播)的神经网络。线性感知机首先,向介绍一下非反向传播的神经网络,其实也就是感知机,本质上就是一个线性分类器。如下:x1*w1+x2*w2+x3*w3..... xn*wn+b= y &nbs
转载
2023-08-29 20:15:01
89阅读
RBF神经网络与BP神经网络优缺点比较 (2016-05-31 21:37:04)
标签: 神经网络
RBF神经网络与BP神经网络优缺点比较
1. RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP 网络的结构要比RBF 网络简单。??
2
转载
2023-10-30 22:27:40
107阅读
神经网络 算法 思路?能否提供一个最简单的代码? 30。最基本的BP算法:1)正向传播:输入样本->输入层->各隐层(处理)->输出层注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修
转载
2023-08-24 19:30:48
410阅读
目录摘要:主要内容:普通RBF:时空RBF结构:时间序列预测效果:部分代码:完整Matlab代码+数据:摘要:提出了一种用于混沌时间序列预测的RBF神经网络的时空扩展。该算法利用时空正交性的概念,分别处理了混沌序列的时间动力学和空间非线性(复杂性)。将所提出的RBF体系结构用于Mackey Glass时间序列的预测,并将结果与标准RBF进行了比较。时空RBF通过实现显著降低的估计误差而优于标准RB
转载
2024-01-08 17:33:22
100阅读
1 RBF神经网络 VS BP神经网络径向基(radial basis functions,RBF)函数网络是以径向基函数为激活函数的人工神经网络,是一种线性组合。RBF函数:RBF和BP同一个数据进行实验对比:%% I. 清空环境变量
clear all
clc
%% II. 训练集/测试集产生
%%
% 1. 导入数据
load spectra_data.mat
%%
% 2. 随机产生训
转载
2023-08-17 11:15:26
91阅读
如何对CNN网络的卷积层进行反向传播在多分类中,CNN的输出层一般都是Softmax。RBF在我的接触中如果没有特殊情况的话应该是“径向基函数”(RadialBasisFunction)。在DNN兴起之前,RBF由于出色的局部近似能力,被广泛应用在SVM的核函数中,当然也有我们熟悉的RBF神经网络(也就是以RBF函数为激活函数的单隐含层神经网络)。如果说把RBF作为卷积神经网络的输出,我觉得如果不
转载
2023-07-04 21:55:29
153阅读
文章目录一、RBF神经网络介绍1.1高斯函数代码实例高斯核函数中的Gamma 一、RBF神经网络介绍从对函数的逼近功能而言,神经网络可分为全局逼近和局部逼近。局部逼近网络具有学习速度快的优点。径向基函数(Radial Basis Function,BRF)就属于局部逼近神经网络。是一种性能良好的前向网络,具有最佳逼近及克服局部极小值问题的性能。网络结构: 首先是多个输入,中间的是径向基函数,常用
转载
2023-07-06 17:00:54
202阅读
一、麻雀搜索算法SSA二、RBF神经网络1988年,Broomhead和Lowc根据生物神经元具有局部响应这一特点,将RBF引入神经网络设计中,产生了RBF(Radical Basis Function)。1989年,Jackson论证了RBF神经网络对非线性连续函数的一致逼近性能。RBF的基本思想是:用RBF作为隐单元的“基”构成隐藏层空间,隐含层对输入矢量进行变换,将低维的模式输入数据变换到高
转载
2023-08-17 12:21:10
221阅读
介绍深度学习是机器学习最近的一个趋势,模拟高度非线性的数据表示。在过去的几年中,深度学习在各种应用中获得了巨大的发展势头(Wikipedia 2016a)。其中包括图像和语音识别,无人驾驶汽车,自然语言处理等等。有趣的是,深度学习的大部分数学概念已经被认识了几十年。然而,只有通过最近的一些发展,深度学习的全部潜力才得以释放(Nair and Hinton,2010; Srivastava et a
转载
2023-09-25 12:22:40
119阅读
from scipy.linalg import norm, pinv
from matplotlib import pyplot as plt
import numpy
class RBF:
def __init__(self, indim, numcenters, outdim):
self.indim = indim
self.outdim = o
转载
2023-06-30 17:40:27
94阅读