文章目录1 RNN的原理1.1 经典RNN结构1.2 N VS 1 RNN的结构1.3 1 VS N RNN的结构2 LSTM的原理3 TensorFlow中的RNN实现方式3.1 实现RNN的基本单元:RNNCell3.2 对RNN进行堆叠:MultiRNNCall3.3 BasicRNNCell和BasicLSTMCell的output3.4 使用tf.nn.dynamic_rnn展开时间维
转载
2024-03-26 11:10:34
51阅读
前言文中所有 RN 缩写指代React Native For Android分析的 RN 代码基于{
"react": "15.4.1",
"react-native": "0.39.2"
}本文主要分析 Java 层实现,对 C++ 和 JS 笔墨较少。阅读正文
转载
2024-05-20 21:09:11
56阅读
传统DNN或者CNN无法对时间序列上的变化进行建模,即当前的预测只跟当前的输入样本相关,无法建立在时间或者先后顺序上出现在当前样本之前或者之后的样本之间的联系。实际的很多场景中,样本出现的时间顺序非常重要,例如自然语言处理、语音识别、手写体识别等应用。 循环神经网络RNN包含循环的网络,可以记录信息的持久化信息,特别适合应用在跟时间序列相关的场合。 RNN之父Jürgen Sch
转载
2024-06-04 15:42:56
36阅读
今天我要讲的是2017年的两篇seq2seq任务中最新的两个科研成果,分别参考了2017年Google团队在NIPS上的论文《Attention Is All You Need》和2017年Facebook团队在ICML上的论文《Convolutional Sequence to Sequence Learning》。目前业界主流方法在解决seq2seq任务的时候往往采取的是encoder-dec
转载
2024-10-25 14:59:04
64阅读
本文会先介绍动态系统的概念,然后介绍两种简单的反馈神经网络,然后再介绍两种门控神经网络(LSTM, GRU),最后是关于反馈神经网络的应用(本次以语音识别为例)。RNN: Recurrent neural network,一般叫它“反馈神经网络”或者“循环神经网络”。一、动态系统日常生活中,动态系统随处可见,蝴蝶扇动翅膀,它的翅膀是随着时间变化的,人走路、内燃机工作、股票等等,都是随着时间变化的。
一、RNN(循环神经网络) RNN结构
和传统前馈神经网络的不同(思想):模拟了人阅读文章的顺序,从前到后阅读每一个单词并将信息编码到状态变量中,从而拥有记忆能力,更好的理解之后的文本。即具备对序列顺序刻画的能力,能得到更准确的结果。模型:按时间展开可以看作是一个长度为T(句子长度)的前馈神经网络h,y 的激活函数可以是tanh或者relu: 假设Relu一直处于
转载
2024-04-05 10:12:50
90阅读
最近又忍不住把RNN这一块儿的东西给过了一遍,感觉还是有一些收获!所以想着给记录下来,因为也看到有人给我提意见说:我写的关于算法的文章太多了,还是要好好搞学术研究,所以就想着最近多更几篇关于深度学习网络方面的文章。关于RNN循环神经网络的具体概念我就不细讲了,稍微把概念给提下吧,然后会说说其变形模型,以及会给出两个demo讲述其在不同领域的应用,方便大家理解!1. RNN循环神经网络介绍上面这张图
转载
2023-06-16 19:04:16
170阅读
目录RNNQARNN来将我们第一个对序列模型的神经网络——循环神经网络 RNN。x是“你”,然后会去更新隐变量,要去预测“好”字。接下来观察到了“好”,更新隐变量后要输一个逗号。\(o_t\)是来match\(x_t\)的输入,但是生成\(o_t\)的时候你是不能看到\(x_t\)的。也就是当前时刻的输出是为了预测当前时刻的观察,但是你的输出发生在观察之前。这里t时刻的输出是\(x_{t-1},h
转载
2021-09-28 09:45:00
152阅读
在TensorFlow中,RNN相关的源码主要分为两类,一类是表示基础Cell实现逻辑的类,这些类都继承自RNNCell类,主要包括BasicRNNCell、BasicLSTMCell、GRUCell等。另外一类就是让cell在不同时间轴上运转起来的循环流程控制类,包括动态单向RNN流程类tf.nn.dynamic_rnn、动态双向RNN流程类tf.nn.bidirectional_dynamic
转载
2024-03-27 09:43:09
240阅读
1 从单层网络谈起在学习RNN之前,首先要了解一下最基本的单层网络,它的结构如图:输入是x,经过变换Wx+b和激活函数f得到输出y。2 经典的RNN结构(N vs N)在实际应用中,我们还会遇到很多序列形的数据:如:自然语言处理问题。x1可以看做是第一个单词,x2可以看做是第二个单词,依次类推。语音处理。此时,x1、x2、x3……是每帧的声音信号。时间序列问题。例如每天的股票价格等等。序列形的数据
转载
2024-05-07 19:57:37
27阅读
主要两个方面 Probabilistic modeling 概率建模,神经网络模型尝试去预测一个概率分布 Cross-entropy作为误差函数使得我们可以对于观测到的数据给予较高的概率值 同时可以解决saturation的问题 前面提到的线性隐层的降维作用(减少训练参数) 这是一个最初版的神经网络语言模型 选取什么要的loss functio
转载
2024-06-14 23:10:17
81阅读
RNN,LSTM,GRU的结构解析RNN结构及代码什么是RNN模型RNN模型的构造RNN模型代码RNN模型的优缺点LSTM结构及代码什么是LSTM模型LSTM的结构Bi-LSTM的简单介绍GRU结构及代码什么是GRU模型GRU模型的结构GRU使用实例RNN结构及其变体就说完了,有什么问题欢迎留言。 RNN结构及代码什么是RNN模型RNN(Recurrent Neural Network)中文叫做
转载
2024-03-19 19:03:40
55阅读
在此之前,我们已经学习了前馈网络的两种结构——DNN和CNN,这两种结构有一个特点,就是假设输入是一个独立的没有上下文联系的单位,比如输入是一张图片,网络识别是狗还是猫。但是对于一些有明显的上下文特征的序列化输入,比如预测视频中下一帧的播放内容,那么很明显这样的输出必须依赖以前的输入, 也就是说网络必须拥有一定的”记忆能力”。为了赋予网络这样的记忆力,一种特殊结构的神经网络——递归神经网络(R
转载
2023-12-04 13:27:30
88阅读
本文收录于《深入浅出讲解自然语言处理》专栏,此专栏聚焦于自然语言处理领域的各大经典算法,将持续更新,欢迎大家订阅!个人主页:有梦想的程序星空个人介绍:小编是人工智能领域硕士,全栈工程师,深耕Flask后端开发、数据挖掘、NLP、Android开发、自动化等领域,有较丰富的软件系统、人工智能算法服务的研究和开发经验。如果文章对你有帮助,欢迎关注、点赞、收藏。1.简述通常,在自然语言生成任务(机器翻译
转载
2024-04-24 15:57:12
53阅读
简单的Char RNN生成文本简单的Char RNN生成文本
Sherlock
Sherlock
I want to create some new things!
32 人赞了该文章
我来钱庙复知世依,似我心苦难归久,相须莱共游来愁报远。近王只内蓉者征衣同处,规廷去岂无知草木飘。你可能以为上面的诗句是某个大诗人所作,事实上上面所有的内容都是循环神经网络写的,是不是感觉很神奇呢?其实这里面的原理非
转载
2022-10-07 17:44:44
136阅读
神经网络一、神经网络基础感知机
在n个输入数据,通过权重与各数据之间的计算和,比较激活函数结果,得出输出应用:很容易解决与、或问题与或问题:于:所有的输入为1,输出为1.或:只要有一个为1,输出就为1.异或:相同为0,不同为1.感知机解决分类问题,下图为简单的感知机模型单个感知机解决不了的问题,可以增加Rosenblatt在1957年,于Cornell航空实验室所发明的一种人工神经网络神经网
循环神经网络RNN网络结构:https://www.jianshu.com/p/9dc9f41f0b29什么是RNNs(通俗易懂版解释) 人类并不是每时每刻都从一片空白的大脑开始他们的思考。在你阅读这篇文章时候,你都是基于自己已经拥有的对先前所见词的理解来推断当前词的真实含义。我们不会将所有的东西都全部丢弃,然后用空白的大脑进行思考。我们的思想拥有持久性。传统的神经网络并不能做到这点,看起来也像是
MTCNN分为三个网络:PNET,RNET,ONET下面是该方法的流程图,可以看出也是三阶级联(与CascadeCNN一样)PNET: 在构建图像金字塔的基础上,利用全连接来进行检测,粗略提取脸部的候选框和回归量,然后利用回归 和 NMS来进行修正。(注意:这里的全卷积网络与R-CNN里面带反卷积的网络是不一样的,这里只是指只有卷积层,可以接受任意尺寸的输入,靠网络stride来自动完成滑窗)tr
Faster R-CNN Keras版源码史上最详细解读系列之源码运行源码介绍数据集格式介绍预训练模型修改部分源码文件 源码介绍我想大多数人跟我一样,而且肯定是想要把源码先跑起来,然后慢慢看里面细节。我用的是windwos,一些最基本的环境,用到的库这种我就不说啦,具体可以看项目里的requirements.txt文件,或者百度。那就先说说keras版的源码,很多的源码是从yhenon克隆来的,
RPN 思路:1、先通过conv层+pooling层+relu层,可以是vgg,得到feature maps。2、在feature maps上提取对应的图。在第一步基础上,先通过rpn生成region proposals。通过softmax判断anchors(9个框),是foreground还是background,再通过bounding box regression 进行修正ancho