参考博客:[译] 理解 LSTM 网络之前提到了RNN,也提到了RNN在处理long term memory的时候存在缺陷,因此LSTM应运而生。LSTM是一种变种的RNN,它的精髓在于引入了细胞状态这样一个概念,不同于RNN只考虑最近的状态,LSTM的细胞状态会决定哪些状态应该被留下来,哪些状态应该被遗忘。下面来看一些RNN和LSTM内部结构的不同:RNNLSTM由上面两幅图可以观察到,LSTM
转载
2024-03-19 09:10:27
60阅读
目录LeNet(1998)AlexNet(2012)ZF Net (2013)VGG(2014)Network In Network(2014)Inception (GoogLeNet) (2015)ResNet(2015)DenseNet(2017)LeNet(1998)LeNet-5,这个开创性的模型很大程度上引入了我们今天所知道的卷积神经网络,最初被用于邮政编码中的手写
转载
2024-10-16 12:16:43
312阅读
最近在研究RNN。RNN 即循环神经网络,是以是一类以序列(sequence)数据为输入的神经网络,输出不仅取决于当前时刻的输入,还和之前时刻的输入有关。而LSTM则是RNN的一种变种,用于改善RNN在处理long term memory时的缺陷。 在查找资料的时候发现了这篇文章写得非常好,而且通俗易懂。将RNN和LSTM之间的区别阐述的非常明白。 首先是两幅经典的图:来自(http://
转载
2024-04-25 13:05:07
63阅读
SVM简介
Support Vector Machine (SVM) 是一个监督学习算法,既可以用于分类(主要)也可以用于回归问题。SVM算法中,我们将数据绘制在n维空间中(n代表数据的特征数),然后查找可以将数据分成两类的超平面。支持向量指的是观察的样本在n为空间中的坐标,SVM是将样本分成两类的最佳超平面。
KNN算法是物以类聚,人以群分,身
循环神经网络及变型总结一、RNN(循环神经网络)二、LSTM(长短时记忆网络)三、GRU(Gated Recurrent Unit)四、BLSTM(双向LSTM)五、ConvLSTM(卷积LSTM)六、总结参考资料: 一、RNN(循环神经网络)循环神经网络的主要用途是处理和预测序列形式的数据。在网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息承上启下,影响后面结点的输出,其
转载
2024-05-30 00:39:54
335阅读
CNNRNN递归神经网络(RNN)是一类包含内部状态的神经网络。 RNN能够编码动态时间行为,因为其在单元之间的连接形成有向循环。 RNN的内部状态可以被视为存储器状态,其包含当前输入和先前存储器的信息。 因此,RNN具有“记住”先前输入和输出的历史的能力。 RNN广泛应用于依赖于上下文的预测框架,例如机器翻译.LSTMLSTM算法全称为Long short-term memory,最早由 Sep
转载
2023-08-04 14:01:01
255阅读
最近在整理tensorflow,经常用到RNN与lSTM,故整理如下:-RNN:循环神经网络(Recurrent Neural Networks)-LSTM:长短时记忆网络(Long Short-Term Memory)在看这篇文章之前,如果之前没有接触过-神经网络,请先阅读-神经网络调优RNNs的目的使用来处理序列数据。其在自然语言中贡献巨大,中文分词、词性标注、命名实体识别、机器翻译、语音识别
转载
2024-04-22 21:55:10
342阅读
最近看文献看到了LTSM(Long Short Term Memory)相关的文献,所以把了解到的内容做一个记录RNN循环神经网络(Recurrent Neural Network, RNN),以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network)。 因为与时间序列相关,
转载
2024-06-05 07:50:23
74阅读
1. CNN算法CNN算法原理
2. RNN算法最早CNN算法和普通算法类似,都是从由一个输入得到另一个输出,不同的输入之间没有联系,无法实现一些场景(例如:对电影每个时间点的时间类型进行分类,因为时间是连续的,每一个时间点都是由前面的时间点影响的,也就是说输入之间有关联)
2.1 典型的序列数据文章里文字内容语音里音频内容股票市场中价格走势
2.2 基本原理RNN 跟传统神经网络最大的
原创
2022-06-23 17:54:46
1632阅读
文章目录前言一、LSTM是什么?算法介绍二、训练LSTM模型1.数据预处理2.构建LSTM模型设定模型参数构建并训练模型训练模型三、 数据可视化展示四、评估模型五、总结参考资料 前言【深度学习】-Imdb数据集情感分析之模型对比(1)-RNN数据集介绍部分见前篇,本文主要讲述LSTM模型的构建。一、LSTM是什么?算法介绍我们之前使用RNN的关键点之一就是他们可以用来连接先前的信息到当前的任务上
转载
2024-08-01 21:44:37
125阅读
RNN:有梯度消失,没有办法长时间记忆。神经网络是用来特征提取CNN因为后边加了一层全连接,才可以去做分类。RNN和CNNRNN:处理序列化数据(一句话,一段语音,一段视频)连续型的,具有记忆性,但是没有办法长期记忆,反向可能会导致梯度消失(梯度消失的原因是反向推到参数可能极小接近0)CNN:第一张图片和第二张图片没有关系,一张张图片处理,所以不适合用来处理序列化数据(文本之类的) &n
转载
2024-07-09 22:17:31
179阅读
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别2. RNN概述Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和分类。它的基本思想是:前向将上一个时刻的输出和本时刻的输入同时作为网络输入,得到本时刻的输出,然后不断地重复这个过程。后向通过BPTT(Back Propagation Through Time)算法来训
是否想过智能键盘上的预测键盘之类的工具如何工作?在本文中,探讨了使用先验信息生成文本的想法。具体来说,将使用Google Colab上的递归神经网络(RNN)和自然语言处理(NLP),从16世纪文献中产生文章。这个想法很简单,将尝试为模型提供莎士比亚剧本的样本,以产生所有假零件,同时保持相同的本地语言。虽然预测性键盘会为可能包含多个单词的不完整句子生成最佳的“单个单词”匹配,但通过使用单个单词生
转载
2023-08-16 20:23:53
94阅读
神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是Rosenblatt。(扯一个不相关的:由于计算技术的落后,当时感知器传输函数是用线拉动变阻器改变电阻的方法机械实现的,脑补一下科学家们扯着密密麻麻的导线的样子…) 但是,Rosenblatt的单层感知机有一个
转载
2024-03-26 11:00:16
143阅读
基于tensorflow的CNN和LSTM文本情感分析对比1. 背景介绍2. 数据集介绍2.0 wordsList.npy2.1 wordVectors.npy2.2 idsMatrix.npy2.2.0 文本预处理2.2.0 为什么把词转化为词向量2.3 Helper Functions3. RNN网络训练4. CNN网络训练5. CNN与RNN训练结果对比6. 循环神经网络系列参考文献 1.
转载
2024-04-26 13:31:59
190阅读
机器学习算法基础理解
原创
2022-11-17 01:48:35
156阅读
AI预测相关目录 AI预测流程,包括ETL、算法策略、算法模型、模型评估、可视化等相关内容最好有基础的python算法预测经验EEMD策略及踩坑VMD-CNN-LSTM时序预测 文章目录AI预测相关目录一、VMD介绍二、CNN-LSTM三、VMD与CNN-LSTM的适配性1.VMD2.cnn-lstm总结 一、VMD介绍VMD(变分模态分解)是一种信号处理技术,用于将复杂的非线性或非平稳信号分解成
转载
2024-06-18 05:53:58
127阅读
LSTM简介 LSTM(Long Short Term Memory)是在标准RNN基础上改进而来的一种网络结构,其出现的主要作用是为了解决标准RNN训练过程中的梯度消失问题,LSTM的结构如下图所示。因此其可以处理时间间隔和延迟较长的序列问题,近年来在语音识别,机器翻译,OCR等领域得到了广泛的应用并取得了比较可观的效果。 相比于标准RNN模型,LSTM主要是增加了三个控制门单元:遗忘门,输入
转载
2024-04-24 15:26:14
358阅读
ANN是指由大量的处理单元(神经元) 互相连接而形成的复杂网络结构,是对人脑组织结构和运行机制的某种抽象、简化和模拟。 [1] 人工神经网络(Artificial Neural Network,简称ANN ),以数学模型模拟神经元活动,是基于模仿大脑神经网络结构和功能而建立的一种信息处理系统。1、反向传播思想: 计算出输出与标签间的损失函数值,然后计算其相对于每个神经元的梯度,根据梯度方向更新权值
1. 循环神经网络①基本结构在传统的神经网络模型中,是从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN(Recurrent Neuron Network)是一种对序列数据建模的神经网络,即一个序列当前的输出与前面的输出也有
转载
2024-04-26 15:20:48
96阅读