卷积神经网络详解guodongwe1991机器学习算法与Python学习注:看本文之前最好能构理解前馈圣经网络以及BP(后向传播)算法,可以看之前发的相关文章或者看知乎、简书、博客园等相关博客。卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(ReceptiveField)的机制而提出的。感受野主要是指听觉系统、本体感
原创 2021-04-08 19:15:28
799阅读
注:看本文之前最好能构理解前馈圣经网络以及BP(后向传播)算法,可以看之前发的相关文章或者看知乎、简书、博客园等相关博客。卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(ReceptiveField)的机制而提出的。感受野主要是指听觉系统、本体感觉系统和视觉系统中神经元的一些性质。比如在视觉神经系统中,一个神经元的感
原创 2021-01-06 10:56:31
647阅读
RBF网络模拟了人脑中局部调整、相互覆盖接收域(或称感受野,ReceptiveField)的神经网络结构,已证明RBF网络能以任意精度逼近任意连续函数。RBF网络的学习过程与BP网络的学习过程类似,两者的主要区别在于各使用不同的激活函数。BP网络中隐含层使用的是S函数,其值在输入空间中无限大的范围内为非零值,因而是一种全局逼近的神经网络;而RBF网络中的激活函数是高斯基函数,其值在输入空间中有限的