深度学习 LSTM长短期记忆网络原理与Pytorch手写数字识别一、前言二、网络结构三、可解释性四、记忆主线五、遗忘门六、输入门七、输出门八、手写数字识别实战8.1 引入依赖库8.2 加载数据8.3 迭代训练8.4 数据验证九、参考资料 一、前言基本的RNN存在梯度消失和梯度爆炸问题,会忘记它在较长序列中以前看到的内容,只具有短时记忆。得到比较广泛应用的是LSTM(Long Short Term
转载
2023-09-05 13:57:24
436阅读
这篇博客是对https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html#sphx-glr-intermediate-seq2seq-translation-tutorial-py中一些问题的解惑,可以配合使用,有其他不理解的也欢迎讨论。 原实验运行在老版本的python和torch上,在当前版本已经做不到
转载
2023-10-27 18:33:18
206阅读
# PyTorch实现LSTM:深度学习中的序列预测
在深度学习领域,长短期记忆(Long Short-Term Memory,简称LSTM)网络是一种非常流行的循环神经网络(RNN)变体。它能够学习到长序列数据中的长期依赖关系,因此在自然语言处理、语音识别、时间序列预测等领域得到了广泛应用。本文将介绍如何使用PyTorch框架实现LSTM,并提供代码示例。
## LSTM简介
LSTM网络
原创
2024-07-30 11:52:37
37阅读
整个个专栏记录一下深度学习的相关文章(一)认识深度学习(二)机器学习应用策略(三)卷积神经网络(四)序列模型(五)pytorch从零实现手写数字识别(六)认识NLP,RNN实现文本情感分析(六)经典试题整合循环神经网络tokenization:分词 token:具体的词常见工具jiebaTHULAC(不推荐)分词方法:句子转为词语句子转换为单个字N-gram准备词语特征的方法,N代表能够一起使用的
转载
2023-12-10 15:50:25
1109阅读
目录I. 前言II. 原理InputsOutputsbatch_first输出提取III. 训练和预测IV. 源码及数据 I. 前言前面几篇文章中介绍的都是单向LSTM,这篇文章讲一下双向LSTM。II. 原理关于LSTM的输入输出在深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中已经有过详细叙述。关于nn.LSTM的参数,官方文档给出的解释为: 总共有七个参
转载
2023-08-01 20:24:33
606阅读
LSTM结构中是一个神经网络,即上图的结构就是一个LSTM单元,里面的每个黄框是一个神经网络,这个网络的隐藏单元个数我们设为hidden_size,那么这个LSTM单元里就有4*hidden_size个参数。每个LSTM输出的都是向量,包括函数class torch.nn.LSTM(*args, **kwargs)参数列表input_size:x的特征维度hidden_size:隐藏层的特征维度
转载
2023-10-08 11:39:58
226阅读
Pytorch LSTM 长短期记忆网络0. 环境介绍环境使用 Kaggle 里免费建立的 Notebook小技巧:当遇到函数看不懂的时候可以按 Shift+Tab 查看函数详解。1. LSTMLSTM 的设计灵感来自于计算机的逻辑门。 LSTM 引入了记忆单元(Memory cell)。 有些文献认为记忆单元是隐状态的一种特殊类型,它们与隐状态具有相同的形状,其设计的目的是用于记录附加的信息。L
转载
2023-10-12 20:30:52
137阅读
文章目录1. 长短期记忆1.1 输入门、遗忘门和输出门1.2 候选记忆细胞1.3 记忆细胞1.4 隐藏状态2. 读取数据集3. 从零开始实现3.1 初始化模型参数4. 定义模型4.1 训练模型并创作歌词5 简洁实现小结 本节将介绍另一种常用的门控循环神经网络:长短期记忆(long short-term memory,LSTM)。它比门控循环单元的结构稍微复杂一点。 1. 长短期记忆LSTM 中
转载
2024-03-03 12:12:04
422阅读
Pytorch实现多层lstmPytorch实现多层lstmPytorch实现多层lstm
原创
2021-08-02 15:00:42
4026阅读
# LSTM的PyTorch源码实现
长短期记忆网络(LSTM)是递归神经网络(RNN)的一种扩展,旨在解决RNN在长序列数据处理时存在的梯度消失问题。它通过引入三个门控机制(输入门、遗忘门和输出门)来灵活地控制信息流。本文将分析LSTM的基本概念,以及如何使用PyTorch实现LSTM的核心部分。
## 1. LSTM的结构
LSTM的单元结构包含三个主要的门,以及一个单元状态。其工作流程
原创
2024-08-12 07:05:33
270阅读
# 使用 PyTorch 实现 CNN-LSTM 模型的指南
在深度学习中,结合卷积神经网络(CNN)和长短期记忆网络(LSTM)可以处理时间序列和空间数据的组合,如视频、音频和文本数据。本文将指导你如何使用 PyTorch 实现一个简单的 CNN-LSTM 模型。
## 流程概述
在开始之前,让我们概述实现 CNN-LSTM 的主要步骤。以下是一个简单的流程表:
| 步骤 | 描述
一、LSTM网络long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。在标准RNN中,这个重复的结构模块只有一个非常简单的结构,例如一个tanh层LSTM也有与RNN相似的循环结构,但是循环模块中不再是简单的网络,而是比较复杂的网络单 元。LSTM的循环模块主要有4个单元,以比较复杂的方式进行
转载
2023-06-25 13:04:32
494阅读
译 | 张大倩编 | 丛 末长短期记忆网络(LSTM),作为一种改进之后的循环神经网络,不仅能够解决 RNN无法处理长距离的依赖的问题,还能够解决神经网络中常见的梯度爆炸或梯度消失等问题,在处理序列数据方面非常有效。有效背后的根本原因有哪些?本文结合简单的案例,带大家了解关于 LSTM 的五个秘密,也解释了 LSTM如此有效的关键所在。秘密一:发明LSTM是因为RNN 发生严重的内存泄漏之前,
转载
2024-08-08 23:38:48
46阅读
# 多输入 PyTorch 实现 LSTM
长短时记忆网络(LSTM, Long Short-Term Memory)是解决时间序列预测和序列数据处理的强大工具。传统的 LSTM 只能处理单一输入,但在许多实际应用中,我们需要处理多个输入。本文将介绍如何用 PyTorch 实现多输入 LSTM,并提供代码示例和可视化图表。
## LSTM 简介
LSTM 是一种通过其门控单元来控制信息流的递
1. LSTM 网络基本原理
2. 使用 Python 包 torch 实现网络构建、训练与验证
使用Python构建LSTM网络实现对时间序列的预测1. LSTM网络神经元结构 LSTM网络 神经元结构示意图 \(t\),LSTM网络神经元接收该时刻输入信息 \(x_t\),输出此时刻的隐藏状态 \(h_t\
转载
2023-06-26 15:24:47
814阅读
最近阅读了pytorch中lstm的源代码,发现其中有很多值得学习的地方。 首先查看pytorch当中相应的定义\begin{array}{ll} \\
i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\
f_t = \sigma(W_{if} x_t + b_{if} + W
转载
2023-08-10 13:27:58
245阅读
1.为什么要用pack_padded_sequence在使用深度学习特别是RNN(LSTM/GRU)进行序列分析时,经常会遇到序列长度不一样的情况,此时就需要对同一个batch中的不同序列使用padding的方式进行序列长度对齐(可以都填充为batch中最长序列的长度,也可以设置一个统一的长度,对所有序列长截短填),方便将训练数据输入到LSTM模型进行训练,填充后一个batch的序列可以统一处理,
转载
2023-08-05 07:32:56
408阅读
首先梳理关键步骤,完整代码附后。关键步骤主要分为数据准备和模型构建两大部分,其中,数据准备主要工作:1、训练集和测试集的划分 2、训练数据的归一化 3、规范输入数据的格式模型构建部分主要工作:1、构建网络层、前向传播forward()class LSTM(nn.Module):#注意Module首字母需要大写
def __init__(self, input_size=1, hidden_
转载
2023-09-05 15:50:20
151阅读
今天用PyTorch参考《Python深度学习基于PyTorch》搭建了一个LSTM网络单元,在这里做一下笔记。1.LSTM的原理LSTM是RNN(循环神经网络)的变体,全名为长短期记忆网络(Long Short Term Memory networks)。 它的精髓在于引入了细胞状态这样一个概念,不同于RNN只考虑最近的状态,LSTM的细胞状态会决定哪些状态应该被留下来,哪些状态应该被遗忘。 具
转载
2023-08-11 16:49:46
148阅读
lstm里,多层之间传递的是输出ht ,同一层内传递的细胞状态(即隐层状态)看pytorch官网对应的参数nn.lstm(*args,**kwargs),默认传参就是官网文档的列出的列表传过去。对于后面有默认值(官网在参数解释第一句就有if啥的,一般传参就要带赋值号了。)官网案例对应的就是前三个。input_size,hidden_size,num_layersParmerters:input_s
转载
2023-08-26 17:02:38
147阅读