简介:迁移学习是把一个领域(即源领域)的知识,迁移到另外一个领域(即目标领域),使得目标领域能够取得更好的学习效果。通常,源领域数据量充足,而目标领域数据量较小,迁移学习需要将在数据量充足的情况下学习到的知识,迁移到数据量小的新环境中。本文我们根据PyTorch官网上的例子(作者:Sasank Chilamkurthy)学习如何使用传输学习来训练网络。 关于迁移学习的更多例子:http://cs2
作者 | News编辑 | 安可 PyTorch迁移学习实际中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很难得到一个足够大的数据集[网络很深, 需要足够大数据集]。通常的做法是在一个很大的数据集上进行预训练得到卷积网络ConvNet, 然后将这个ConvNet的参数作为目标任务的初始化参数或者固定这些参数。转移学习的两个主要场景:微调Co
本博客的内容是讲解新手如何利用Pytorch针对自己所设计的数据集进行简单的迁移学习。笔者在网上找了一幅图,能够很形象的说明迁移学习的含义,如下: 以VGG16为Backbone,CIFAR10为数据集,AdamW为梯度下降策略,ReduceLROnPlateau为学习调整机制。注意:显卡是2060,电脑是拯救者;VGG16网络便对此进行了改进(img_size为 文件结构D:
深度学习Pytorch(九)——迁移学习 文章目录深度学习Pytorch(九)——迁移学习一、简介二、实例1、导入package2、加载数据3、可视化部分图像数据4、训练model5、可视化模型的预测结果6、迁移学习使用场景1——微调ConvNet7、迁移学习使用场景2——ConvNet作为固定特征提取器 一、简介实际中,基本上没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,
参考:PyTorch官方教程中文版实际中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很难得到一个足够大的数据集[网络很深, 需要足够大数据集]。通常的做法是在一个很大的数据集上进行预训练得到卷积网络ConvNet, 然后将这个ConvNet的参数作为目标任务的初始化参数或者固定这些参数。迁移学习的2种场景:1、微调Convnet:使用预训练的网络(如在imagene
1 引言艺术往往超越了人类的存在。回顾整个人类的历史进程,我们可以发现艺术的重要性,艺术品往往都是一个人实现表达自我对世界认知的一种手段。 传奇画物毕加索曾经说过:“It took me four years to paint like Raphael, but a lifetime to paint like a child.”大多数艺术创作都遵循某种模式—— 一种令人愉悦并激发我们创造性的艺术
概述在深度神经网络算法的应用过程中,如果我们面对的是数据规模较大的问题,那么在搭建好深度神经网络模型后,我们势必要花费大量的算力和时间去训练模型和优化参数,最后耗费了这么多资源得到的模型只能解决这一个问题,性价比非常低。如果我们用这么多资源训练的模型能够解决同一类问题,那么模型的性价比会提高很多,这就促使使用迁移模型解决同一类问题的方法出现。因为该方法的出现,我们通过对一个训练好的模型进行细微调整
目录1. 实验环境2. 实验目的3. 相关原理4. 实验步骤4.1 数据收集4.1.1加载数据4.1.2 GPU运算4.2 数据预处理4.3 创建模型4.3.1 构建迁移模型4.3.2 训练模型+测试+绘制图表4.3.2.1 预训练模式4.3.2.2 固定值模式4.4 结论 1. 实验环境Jupyter Notebook Python 3.7 PyTorch 1.4.02. 实验目的迁移学习,让
风格迁移原理 可以将VGGNet这样的网络结构看作为输入图像——提取特征——进行分类,而图片风格迁移是输入特征,输出对应这种特征的值。 简单介绍一下我实现风格迁移的基本思路,首先进行图片预处理,定义VGG19用于特种提取,然后复制一张与内容图相同的图片,分别将内容图、风格图、目标图放入神经网络进行特征提取,定义损失是采用均方差计算内容损失,利用Gram矩阵内积运算,运算后特征图越大的数字就会变得更
转载 2023-08-21 15:32:25
176阅读
  本文给出简单代码实现风格迁移。1,原理简介  风格迁移和上篇文章提到的deep dream算法比较接近,都是根据某种优化指标计算梯度来反向优化输入图像的像素。所以在学完deep dream之后趁热打铁又学了这个,但本文仅限于基础版的实现,对该领域后来发展出的诸多进化版不做讨论。   基于深度学习的风格迁移最早由 Gatys于2015年提出,其核心理论是使用格拉姆矩阵(gram matrix)来
PyTorch是业界流行的深度学习框架,用于开发深度学习训练脚本,默认运行在CPU/GPU上。为了使这些脚本能够利用昇腾AI处理器的强大算力执行训练,需要对PyTorch的训练脚本进行迁移。首先,我们了解下模型迁移的全流程: 通过上图可以看出,模型迁移包括“脚本迁移 –> 模型训练 –> 精度调优 –> 性能调优 –> 模型
文章目录VGG19风格迁移content lossGram MatrixStyle Losstotal loss 风格迁移就是将一张图片的风格迁移到另一张图片上面,比方说把浮世绘的风格迁移到猫的图片上 VGG19我们需要用到VGG19的网络,这个网络长下面的样子,一张三通道的彩色图片作为输入,经过一系列的卷积和pooling层,有5个pooling层,中间夹着一组2个或者4个的卷积层,比方说第
转载 2023-11-19 10:04:00
65阅读
因公司业务要求,需要增加Mysql数据库数量,所以需要把数据重新从老的数据库根据分库规则分布到不同Mysql数据库中。本来可以使用ETL工具的,but,公司VM太破不支持呀。嗯,正好最近学了点python,就拿它练练手吧。功能:1、多对多数据迁移             2、断点续传(从哪里跌倒,就从哪里爬起来)  &
转载 2023-08-04 13:17:28
100阅读
迁移学习的含义就是利用别人训练几周或者几个月的模型参数作为自己的模型参数,通过使用其他人预训练的权重,这样很可能就会得到很好的性能。还有一种情况,将他人训练的模型的前面的层数都冻住,类似于一个不变的函数,只需要改变后面的一下网络结构,这样我们自己的模型就需要训练改变后的一些模型权重。实现迁移学习要满足以下几点:保持输入数据的格式大小一致,使用经典网络的权重,尽量减少识别图片的差异,比如别人网络的权
转载 2023-10-14 06:06:27
101阅读
前言 文章目录前言1.介绍2. 基本原理3 准备工作4 加载素材 1.介绍本教程主要讲解如何实现由Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的 Neural-Style 算法。Neural-Style或者叫Neural-Transfer,可以让你运用新的风格将你指定的图片进行重构。这个算法将使用两张图片,一张图片作为风格提供者,一张图片作为
在深度学习领域,许多开发者和研究人员使用PyTorch进行模型训练和推理。随着版本的不断更新,迁移旧版本中的Inception模型到新版本常常面临一些挑战。本博文旨在解决“PyTorch迁移Inception”的问题,我将详细记录整个过程,包括版本对比、迁移指南、兼容性处理、实战案例、排错指南和生态扩展,这样便于大家在迁移过程中参考。 ## 版本对比 在进行迁移之前,我们先对比一下各个PyTo
原创 6月前
53阅读
前言什么是图像风格的迁移?其实现在很多的APP应用中已经普遍存在了,比如让我们选择一张自己的大头照,然后选择一种风格的图片,确认后我们的大头照变成了所选图片类似的风格。图像风格迁移重点就是找出一张图片的特征,然后将其融合到需要改变的图片中去,如下图所展示的就是一种典型的风格迁移。 所以图像风格迁移实现的难点就在于如何提取一张图片的特征,这里说的特征
Pytorch构建风格迁移前言风格迁移示例Pytorch实战获取原始内容图片与风格图片并进行预处理搭建网络框架**构建内容损失与风格损失**构建优化器进行最终训练 前言艺术创作可以看做两个重要因素的联合,即画什么和怎么画(内容与风格)。而风格迁移(Style Transfer)在图像处理中被广泛用于风格再创作,即基于所定内容按照指定的艺术风格进行绘画。复现本文需要用到Pytorch库,可参考本人
PyTorch》Part5 PyTorch迁移学习 环境配置: torch 1.6.0+cu101 torchvision 0.7.0+cu101 显卡: NVIDIA1050 内存:2GB实际中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很 难得到一个足够大的数据集[网络很深, 需要足够大数据集]。通常的做法是在一个很大的数据集上 进行预训练得到卷积网络Con
Repustate向世界各地的企业和组织提供文本分析服务。随着公司的发展,他们每天处理的文本段数量从5亿增加到10亿,其中包括Tweet、新闻文章、博客评论、用户反馈等。大规模的文本分析非常困难,因为很少会出现两段文本完全相同的情况,所以无法利用缓存来提高效率。不过,它可以将大段的文本分成多个句子,然后并发分析每个句子。近日,Repustate官方博客发表了一篇博文,介绍其API的演进过程。\\
  • 1
  • 2
  • 3
  • 4
  • 5