input_t = input_t.squeeze(1) 这行代码用于从 input_t 中去除尺寸为1的维度。在深度学习中,经常会出现具有额外尺寸为1的维度,这些维度通常是为了匹配模型的期望输入维度而添加的。在这里,input_t可能具有形状 (batch_size, 1, feature_dim),其中 1 表示时间步维度。在某些情况下,模型可能要求输入不包含时间步维度,而只包含 (batch
转载
2024-10-25 15:04:33
233阅读
数据的描述维度:数据的维度主要用集中趋势、离散程度、分布形态三块表示。一、集中趋势1.算数平均值2.加权算数平均值注:算数平均值是特殊的加权算数平均值,其每个权重均为1;同时如果数据样本中出现极大值、极小值时,再计算平均值,其实际的意义可能就会打折扣,如我们经常说的被平均了。3.几何平均值 示例:制造企业使用几何平均数识别产线上的隐形损耗4.众数:出现次数最多的数注:如果一个样本 集中有两个众数,
转载
2024-01-22 12:50:25
346阅读
2021年11月17日11:32:14 今天我们来完成Pytorch自适应可学习权重系数,在进行特征融合时,给不同特征图分配可学习的权重!实现自适应特征处理模块如下图所示: 特征融合公式如下: 其中,为归一化权重,,为初始化权重系数。 结构分析:对于一个输入的特征图,有四个分支从上往下,第一个分支用的是Maxpooling进行最大池化提取局部特征第二个分支用的是Avgpooling进行平均池化提取
转载
2024-01-24 15:31:19
247阅读
# PyTorch特征融合教程
特征融合是深度学习中一个重要的步骤,尤其是在处理复杂任务如图像识别或自然语言处理时。PyTorch作为一个流行的深度学习框架,提供了强大的工具来实现特征融合。本文将带你一步步实现特征融合的过程,并提供详细的代码示例和注释。
## 流程概述
在我们开始之前,先来简单了解一下特征融合的基本步骤。以下是使用PyTorch进行特征融合的一般流程:
| 步骤 | 描述
1. 改变shapetorch.reshape()、torch.view()可以调整Tensor的shape,返回一个新shape的Tensor,torch.view()是老版本的实现,torch.reshape()是最新的实现,两者在功能上是一样的。示例代码:import torch
a = torch.rand(4, 1, 28, 28)
print(a.shape)
print(a.vie
转载
2023-12-25 13:27:54
157阅读
本篇pytorch的维度变换进行展示,包含:view/reshapesqueeze/unsqueezeexpand/repeattranspose/t/permutebroadcast使用方法和含义均在代码的批注中给出,因为有较多的输出,所以设置输出内容的第一个值为当前print()方法所在的行维度变换import torch
import numpy as np
import sys
loc =
转载
2024-08-20 17:26:28
74阅读
动动发财的小手,点个赞吧! PyTorch 中用于图形捕获、中间表示、运算符融合以及优化的 C++
动动发财的小手,点个赞吧!PyTorch 中用于图形捕获、中间表示、运算符融合以及优化的 C++ 和 GPU 代码生成的深度学习编译器技术入门计算机编程是神奇的。我们用人类可读的语言编写代码,就像变魔术一样,它通过硅晶体管转化为电流,使它们像开关一样工作,
转载
2023-12-07 11:03:39
72阅读
1 特征融合【学习资源】图像处理-特征融合:相加、拼接、Attention1.1 底层特征/高层特征低层特征:低层特征分辨率更高,包含更多位置、细节信息,但是由于经过的卷积更少,其语义性更低,噪声更多。高层特征:高层特征具有更强的语义信息,但是分辨率很低,对细节的感知能力较差。1.2 早融合/高融合/Attention融合早融合(Early fusion): 先融合多层的特征,然后在融合
转载
2024-05-24 20:35:14
64阅读
文章目录前言多维张量的维度torch.max()torch.argmax()torch.softmax()torch.stack()总结 前言 做深度学习的项目离不开对tensor的操作,tensor中文名称是张量,以PyTorch框架为例,张量是PyTorch的基本数据类型,初学者对张量操作时,常常会被dim这个参数困扰,本文测试了torch.max()、torch.argmax()、tor
转载
2024-05-29 12:32:34
110阅读
继往开来之DenseNetDenseNet最大化了这种前后层信息交流,通过建立前面所有层与后面层的密集连接,实现了特征在通道维度上的复用,使其可以在参数与计算量更少的情况下实现比ResNet更优的性能,图1网络由多个DenseBlock与中间的卷积池化组成,核心就在Dense Block中。Dense Block中的黑点代表一个卷积层,其中的多条黑线代表数据的流动,每一层的输入由前面的所有卷积层的
转载
2024-09-02 22:46:01
56阅读
googlenet注意:每个分支所得的特征矩阵高和宽必须相同1.inception块的引入(1)alexnet引入ReLu(缓解梯度消失),隐层全连接层后加入了丢弃层 (2)vgg出现卷积层组合成块(通过堆叠三个33卷积核来代替55卷积核需要的参数) (3)nin模型出行1*1卷积,丢弃全连接层 (4)googlenet全部结合,inception块,从四个路径从不同层面抽取信息,然后在输出通道维
在本文中,我将分享一些关于“PyTorch 特征融合代码”的实践经验,涵盖从背景定位到架构设计的完整过程,帮助大家对这一主题有更深入的了解。
在我们开始之前,给大家提供一些背景。大多数时候,在机器学习和深度学习中,特征融合是一种提升模型性能的有效手段。在复杂的业务场景中,利用不同来源和类型的数据进行特征融合,可以使模型从多维度获取信息,从而提高识别准确率。例如,在图像和文本的结合应用中,我们可以
一、原始ORB算法 1.原始FAST角点检测 2、原始BRIEF特征点描述子 3、O-FAST 角点检测 ORB 的特征点检测部分采用的是 FAST 算子,并在针对其不具备方向性这一缺点进行改进。FAST 算子以其角点提取准确、高效、快速性能,在并行追
转载
2024-03-28 07:11:22
125阅读
最近开始利用Pytorch写一些深度学习的模型,没有系统的去学习pytorch的用法,也还没来得及去看别人的写法,先简单记录一些自己的想法。 利用Pytorch在写一些具有多个分支的模型时(比如具有特征融合、模型融合或者多个任务的网络结构),模型类该怎么写,loss会怎么传播,应该先将input融合再传入forward还是传入forward后再进行融合等问题。特征融合使用相同的模型对输入进行特征的
转载
2023-12-23 21:51:45
135阅读
特征提取网络前面我们已经知道了SSD采用PriorBox机制,也知道了SSD多层特征图来做物体检测,浅层的特征图检测小物体,深层的特征图检测大物体。上一篇博客也看到了SSD是如何在VGG基础的网络结构上进行一下改进。但现在的问题是SSD是使用哪些卷积层输出的特征图来做目标检测的?如下图所示:从上图中可以看到,SSD使用了第4、7、8、9、10、11层的这6个卷积层输出作为特征图来做目标检测,但是这
转载
2023-11-06 23:47:39
124阅读
文章目录理论代码验证原生写法算法融合1.改造2.融合对比耗时 理论 论文中提及如何将一个训练时的多分支模块转换为单一的卷积,从而达到加速的目的。如下图所示: 代码验证 视频介绍的代码中并没有考虑BN层。原生写法 对应上图中(A)的第1幅小图:import torch
import torch.nn as nn
import torch.nn.functional as F
import tim
转载
2023-12-15 17:53:48
145阅读
文章目录1 高低层特征特点2 高低层特征融合方法3 案例3.1 Deep Feature Fusion for VHR(高分辨率图像) Remote Sensing Scene Classification (DCA特征融合方法)3.2 基于神经网络的目标检测论文之目标检测方法:改进的SSD目标检测算法(DensNet)3.3 FPN(feature pyramid networks)3.4 Y
转载
2024-01-22 11:40:23
178阅读
Pytorch 风格迁移0. 环境介绍环境使用 Kaggle 里免费建立的 Notebook教程使用李沐老师的 动手学深度学习 网站和 视频讲解小技巧:当遇到函数看不懂的时候可以按 Shift+Tab 查看函数详解。1. 风格迁移1.1 概述将一个图像中的风格应用在另一图像之上,即风格迁移(style transfer)。这里我们需要两张输入图像:一张是内容图像,另一张是风格图像。 我们将使用神经
转载
2023-12-01 09:25:14
176阅读
Github目录1. 简介2. 基本原理3. 导包并选择设备4. 加载图片5. 损失函数6. 导入模型7. 梯度下降1. 简介本教程主要讲解如何实现由Leon A. Gatys,Alexander S. Ecker和Matthias Bethge提出的 Neural-Style 算法。Neural-Style或者叫Neural-Transfer,可以让你使用一种新的风格将指定的图片进行重
转载
2023-10-29 14:18:17
341阅读
# pytorch维度不同矩阵相加实现指南
作为一名经验丰富的开发者,我将指导你如何使用PyTorch实现维度不同的矩阵相加。在本文中,我将提供步骤、代码示例和注释,以帮助你更好地理解。
## 步骤概述
下面是实现维度不同矩阵相加的步骤概述。我们将按照以下顺序进行操作:
1. 导入所需的PyTorch库
2. 创建两个维度不同的矩阵
3. 调整矩阵的维度
4. 相加两个矩阵
5. 查看结果
原创
2023-12-27 03:45:07
315阅读