# Python画灰度图:一门简单而有趣的技能
图像处理在现代科技中扮演着举足轻重的角色,尤其是在计算机视觉和机器学习领域。灰度图作为最基本的图像形式,广泛应用于图像分析和处理,在了解颜色图像之前,掌握灰度图像的生成与处理是非常重要的。本文将介绍如何使用Python绘制灰度图,并提供相关的代码示例。
## 灰度图的基础知识
灰度图是指仅含有亮度信息的图像,每个像素的值对应于该点的亮度,范围从
原创
2024-08-20 06:18:29
103阅读
图片是由像素点矩阵组成的,对图片的操作即为对像素点矩阵的操作。只要在这个像素点矩阵中找到这个像素点的位置,比如第x行,第y列,所以这个像素点在这个像素点矩阵中的位置就可以表示成(x,y),因为一个像素点的颜色由红、绿、蓝三个颜色变量表示(R,G,B),所以我们通过给这三个变量赋值,来改变这个像素点的颜色。1:读入正常图片进行图片灰度处理import cv2,copy, math
#读入原始图像
i
转载
2023-06-30 14:16:47
1243阅读
目录python OpenCV介绍cmd安装模块读取图片将图片转为灰度图片python OpenCV介绍OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了P
转载
2023-06-27 11:04:53
174阅读
Task01:Opencv基本了解、图像读取和绘图8 bits(位值)-> 256 levels(分辨率)灰度图像:0黑色-255白色,将灰色分成256级,一层全彩图像RGB:颜色通道(红、绿、蓝),三层,每层的0-255代表该层颜色的亮度像素:VGA:640*480HD:1280*720FHD:1920*10804K:3840*2160打开照片:import numpy as np
imp
转载
2024-04-25 17:18:35
300阅读
返回OpenCV-Python教程在OpenCV中通常使用cvtColor()进行色彩空间的转换,它可以实现彩色图像在各种色彩空间里的转换,也可以用于彩色图像和灰度图像之间相互转换,但是在彩色图像转换到灰度图像后,再用该灰度图转换回彩色图像只是名义上多通道的彩色图像,人眼看到的却不是“彩色”了。下面这个例子展示了这个彩转灰、灰转彩的过程:#vx:桔子code / juzicode.com
impo
转载
2023-06-29 14:28:51
795阅读
在上一篇中记录了,如何配置opencv环境的问题。本篇则记录对灰度图像进行一些常规处理。一张图片是由像素点矩阵构成,我们对图片进行操作即为对图片的像素点矩阵进行操作。我们只要在这个像素点矩阵中找到这个像素点的位置,比如第x行,第y列,所以这个像素点在这个像素点矩阵中的位置就可以表示成(x,y),因为一个像素点的颜色由红、绿、蓝三个颜色变量表示(R,G,B),所以我们通过给这三个变量赋值,来改变这个
转载
2024-03-04 11:07:20
72阅读
我这里使用的是opencv3.0。0的版本,运行环境为vs2013实现代码#include<opencv2/core/core.hpp>
#include<opencv2/highgui/highgui.hpp>
#include <opencv2\imgproc\types_c.h>
#include<opencv2/imgproc/imgproc.h
转载
2023-07-06 15:37:01
139阅读
要求:将下图的 的水果提取出来,去掉logo。使用到的知识,图像采集、灰度化、二值化、特征选择。灰度直方图 首先采集图像,代码如下:read_image (Image, 'C:/Users/LWJ/Desktop/AS_1/各种颜色的水果.jpg')
dev_close_window ()
dev_open_window (0, 0, 512, 512, 'black', WindowHandle
转载
2024-05-06 23:55:21
104阅读
好久没更新,趁今天要做核酸回不了宿舍,把今天的学习的opencv知识先记录一下!运行环境是:pycharm话不多说,献上代码再说:import cv2 # opencv读取的格式是BGR
import matplotlib.pyplot as plt
import numpy as np
# 读取图片;括号里面填写好路径就行!!
img = cv2.imread("./123.jpg")
pr
转载
2023-10-09 16:48:36
143阅读
(近期有用到灰度直方图的情况,就稍微做了一点点小总结,第一次总结,借鉴了很多博主的文章,下面会码出链接,膜拜大佬~)1. 图像灰度直方图灰度直方图是将数字图像中所有像素按灰度值的大小,统计每种像素值出现的频率。 此处以uint8类的图像为例,该类图像具有2^8=256级亮度,不同亮度对应的像素数不同,统计得到256级亮度分别对应的像素数并绘制出直观的图表,其横坐标对应灰度值(0为黑色,255为白色
转载
2023-12-08 19:14:09
280阅读
# 使用Python绘制灰度图:新手指南
在计算机视觉和图像处理领域,灰度图是基础而重要的概念。在本教程中,我们将学习如何使用Python生成一个灰度图像。即便你是一个刚入行的小白,只要按照步骤进行,就能顺利完成任务。下面我们将提供一个清晰的流程,以及需要用到的代码和解释。
## 流程概述
在实现“Python矩阵画灰度图”的过程中,我们将遵循以下步骤:
| 步骤 | 描述
原创
2024-09-21 05:25:26
70阅读
学习openCV也有一段时间了,今天想着怎么把图片显示在MFC上,就开始百度找案例和方法,结合了许多大神的博客,总结了他们的东西,完成了自己想要的东西,把自己做的过程贴出来,仅供参考。1.建立MFC工程文件2,由于以后的代码会用到CvvImage类,而opencv2.3以后就去掉了对它的支持,这里先介绍添加CvvImage支持的方法,直接能用的可以略过这一步。点“头文件”和“源文件”,单击右键,新
转载
2024-08-22 07:24:28
112阅读
图像载入、显示、保存函数: 1 图像载入函数:imread() Mat imread(const string& filename, int flags=1); const string&类型的filename为载入图像的路径(绝对路径和相对路径) flags是int类型的变量
转载
2024-07-27 14:45:33
76阅读
1、进行图片读取的函数是:cv2.imread cv2.imread函数语法如下:cv2.imread(filename,flag=1) cv2.imread函数的参数解释: &
转载
2023-11-07 04:51:11
81阅读
opencv实验的小总结,对很多原理不是很理解,便打算做个记录方便自己以后回顾。代码和相关图片都上传至个人仓库opencv-python了,以方便自己查阅复习。(一)使用OpenCV进行RGB到HSV和YUV色彩空间转换,并显示保存。• HSV分别是色调(Hue),饱和度(Saturation)和明度(Value)•YUV中Y表示明亮度,U、V表示色度(浓度);色度信号是由两个互相独立的信号U和V
转载
2023-08-04 15:48:19
117阅读
256256 OpenCV可以将彩色图转换成灰度图,这不难理解。但是OpenCV能将灰度图转换成彩色图,这也太厉害了吧。想象一下,将图1中的灰度图输入进去,出来的竟然是图2这种的彩色图,也太不可思议了,可事实是我想多了。 图1 lena_gray 图2 lena_rgb 首先看看彩色图是怎么转换成灰度图的,先读入照片 import cv2
转载
2023-10-12 08:48:04
819阅读
对图片进行操作时经常会涉及到不同通道数据提取,在OpenCV中提供了很多比较便捷的操作函数,本文涉及函数如下:1.cvtColor 颜色空间转换 2.convertTo 图片数据类型转换 3.split 图片通道分离 4.merge 图片不同通道合并 5.extractChannel 抽取图片某一个通道 6.applyColorMap 灰度图转伪彩色图1.函数cvtColor定义:void cvt
转载
2023-10-12 06:21:24
558阅读
图像载入、显示、保存函数:1 图像载入函数:imread() Mat imread(const string& filename, int flags=1); const string&类型的filename为载入图像的路径(绝对路径和相对路径) fl
转载
2023-11-23 19:02:19
72阅读
1、图像简介图像主要是由一个个像素点组成。 计算机中的像素点的取值范围为0~255,数值大小表示该点的亮度。 RGB称为图像的颜色通道,其中R表示红色通道,G表示绿色通道,B表示蓝色通道。 灰度图只有一个通道,该通道主要用于表示亮度。2、读取图像OpenCV 提供了函数 cv2.imread() 来读取图像,该函数支持各种静态图像格式,比如 *.jpg、*.png、*.jp2、*.dib、*.bm
转载
2023-11-09 09:17:40
0阅读
一、开发前准备pycharm版本:2023.1 python版本:3.7.5 opencv-python版本:4.5.4.60二、图像的灰度转换灰度处理的操作很简单,只需要在第一部分的基础上加上一行代码即可,完整代码如下:import cv2
img = cv2.imread('st.jpg')
cv2.imshow('img', img)
# 对图像进行灰度转换
gray_img = cv2.
转载
2023-08-29 11:04:18
79阅读