文章目录一、提取特征二、保存特征点 一、提取特征傅里叶描述子特征点进行提取提取手部轮廓原理:加载图像(opencv,截图保存saveROI)肤色检测(YCrCb颜色空间的Cr分量+Otsu法阈值分割算法)图像去噪(numpy二值化处理)轮廓提取(canny检测,cv2.findContours->傅里叶描述子Laplacian)二次去噪(numpy二值化处理)绘制轮廓(cv2.drawCo
转载
2023-09-18 20:53:49
2阅读
在文本分类中,需要先对文本分词,原始的文本中可能由几十万个中文词条组成,维度非常高。另外,为了提高文本分类的准确性和效率,一般先剔除决策意义不大的词语,这就是特征词提取的目的。本文将简单介绍几种文本特征词提取算法。信息增益(IG)对于一个系统,其信息熵为\(H(S)=-\sum_{i}^{C}P_i...
转载
2015-12-04 02:02:00
484阅读
2评论
## 文本提取与特征词联动
在自然语言处理领域,文本提取和特征词的识别是非常重要的任务。文本提取可以帮助我们从大量的文本数据中获取有用信息,而特征词则可以帮助我们更好地理解文本的含义和特点。在本文中,我们将介绍如何使用Python进行文本提取,并将提取出的特征词和期望值进行联动分析。
### 文本提取
首先,我们需要使用Python中的一些库来进行文本提取。其中,最常用的库之一是`nltk`
原创
2024-07-02 03:39:37
34阅读
背景文本分词利用python中的jieba、中科院、清华、哈工大的一些分词工具来进行分词处理。在处理词类时一般关注词性、词与上下文之间是否有强联系之类的问题。统计分词word前后word的分布概率,通过P(pre_word|word)等合并成词概率高的词。N-gram特征统计N-gram模型是一种语言模型,语言模型是一个基于概率的判别模型,他的输入是一句话(单词的顺序序列),输出的是
sklearn.feature_extraction模块,对数据进行特征提取,以支持机器学习算法使用。一、DictVectorizersklearn.feature_extraction.DictVectorizer(dtype=<class 'numpy.float64'>, separator='=',sparse=True,sort=True) 将<特征-值>映射转化
转载
2023-09-04 12:35:22
92阅读
SIFT算法的介绍参见:SIFT算法学习小记 前面有朋友问到Sift特征点的提取方法,这里简单做个介绍。 作为一种匹配能力较强的局部描述算子,SIFT算法的实现相当复杂,但从软件开发的角度来说,只要会使用其中几个比较重要的函数就行了。这里要感谢
转载
2023-11-27 10:48:47
35阅读
在本文中,我们将回顾特性选择技术并回答为什么它很重要以及如何使用python实现它。本文还可以帮助你解答以下的面试问题:什么是特征选择?说出特性选择的一些好处你知道哪些特征选择技巧?区分单变量、双变量和多变量分析。我们能用PCA来进行特征选择吗?前向特征选择和后向特征选择的区别是什么?什么是特征选择,为何重要特性选择是选择与ML模型更加一致、非冗余和更相关的基本特性的过程。在ML项目中使用特性选择
学习特征词向量
原创
2021-08-02 15:51:00
123阅读
# Python文本特征词和特征值
在自然语言处理领域,文本特征词和特征值是非常重要的概念。通过对文本数据进行特征提取和特征表示,可以帮助我们更好地理解和处理文本信息。在Python中,有许多强大的工具和库可以帮助我们进行文本特征提取和特征表示,比如`scikit-learn`和`NLTK`等。
## 文本特征词
文本特征词是指在文本中具有特殊意义或特殊作用的词汇。在文本分类、文本聚类、情感
原创
2024-07-11 06:17:45
36阅读
如果你不知道词云是啥的?看下面这个图就知道了。在很多的大型峰会的PPT上,我们都能看到它的身影。到底它为啥这么受欢迎呢?首先从功能上说,它的可视化效果好,可以过滤无用的文本、渲染频率高的关键字,通过字体大小对比就能区分词频。在我们分析调性的时候,例如标题、内容、留言,“词云”能起到很好的辅助作用。其次从颜值上说,一张漂亮的词云图,能让你的PPT增色不少,也让看的人一目了然。大家都知道现在企业生存不
转载
2023-10-27 16:38:01
92阅读
一、特征提取与选择任务定义:得到实际对象的若干具体特征之后,再由这些原始特征产生对分类识别最有效、数目最少的特征。使在最小维数特征空间中异类模式点相距较远,同类模式点相距较近。二、特征提取与选择任务的提出背景:①获得的特征测量值不多,导致提供的信息较少②获得的测量值太多,导致维度灾难(特征数目达限后,性能反而不好)③特征存在很多无用信息,或者有的有用信息不能反映本质,要通过变换才能得到更有意义的量
转载
2024-01-06 09:15:08
40阅读
两种基于注意力的上下文aggregation图对于每个位置(例如蓝色),Non-local模块都会生成密集的注意力图,该图的权重为H×W(绿色)。对于每个位置(例如蓝色),criss-cross注意模块会生成一个稀疏的注意图,该图仅具有H + W-1个权重。 循环操作后,最终输出特征图中的每个位置(例如红色)都可以捕获所有像素的远程依赖关系。 为了清晰显示,忽略了残差连接。1.Overall图2是
# 使用Python将句子中特征词转换为词向量
词向量是自然语言处理(NLP)中的重要概念,它能够将文本数据转换为计算机可以理解的数值形式。本文将介绍如何使用Python将句子中的特征词转换为词向量。同时,我们会使用一个简单的示例来演示整个过程。
## 1. 什么是词向量?
词向量是文本分析中的一种表示方法,它将每个词表示为一个稠密的向量。这种表示可以捕捉词与词之间的语义关系,例如,”王子“
# 如何实现 Python 文本数据特征词库
在处理文本数据时,我们通常需要从大量的文本中提取信息,特征词库便是这个过程中的关键工具。本文将带领你从零开始实现一个 Python 文本数据特征词库,适用于初学者。我们将分步骤介绍整个流程,包括需要用到的代码及其注释。
## 流程概览
在实现一个文本数据特征词库的过程中,我们将遵循以下步骤:
| 步骤 | 描述
我想计算Haar特征,自己手动计算感觉挺麻烦(主要在取各个不同位置、不同scale的特征),而且可能速度不够。
OpenCV 的这个把所有东西都封装起来了,由于我的online-boosting和它的框架不一样,不能直接使用。我在源码中看了半天,发现里面又有 internal haar feature又有fast haar feature,还有什么Thaar feature。源码中注释比较少,
转载
2024-08-23 17:22:10
57阅读
应用:图像拼接、图像匹配特征检测和提取算法:Harris(检测角点)SIFT(检测斑点blob)SURF(检测斑点)FAST(检测角点)BRIEF(检测斑点)ORB(带方向的FAST算法与具有旋转不变性的BRIEF算法)特征匹配算法:暴力匹配(Brute-Force)基于FLANN匹配。特征:特殊的图形区域、独特性和易于识别性--角点和高密度区域。大量重复区域和低密度区域不适合作为特征,边缘时很好
转载
2023-12-04 18:52:04
87阅读
1 基本数值特征本文以bilibili上的学习视频为笔记,代码原图1.1 离散值处理np.unique()看一下有多少类别1.2 标签编码LabelEncoder将离散值映射为计算机可以识别的数据。例子是采用的LabelEncoder来实现,数值是从0开始。也可以自己手动写one-hot Encoding什么是one-hot编码,简单的说就是,假如有5个类别,“鸡,鸭,鹅,猫,狗”,转换为one-
转载
2024-06-24 21:09:47
164阅读
本篇blog是利用Python进行文章特征提取的续篇,主要介绍构建带TF-IDF权重的文章特征向量。
In [1]:
# 带TF-IDF权重的扩展词库
# 在第一篇文档里 主要是利用词库模型简单判断单词是否在文档中出现。然而与单词的顺序、频率无关。然后词的频率对文档更有意义。因此本文将词频加入特征向量
In [2]:
转载
2023-11-23 22:51:20
216阅读
Scikit-Learn是基于python的机器学习模块,基于BSD开源许可证。这个项目最早由DavidCournapeau 在2007年发起的,目前也是由社区自愿者进行维护。它的主要特点有操作简单、高效的数据挖掘和数据分析、无访问限制、在任何情况下可重新使用、建立在NumPy、SciPy和matplotlib基础上、使用商业开源协议--BSD许可证等。scikit-learn的基本功能主要被分为
转载
2024-06-06 21:43:12
93阅读
修改prototxt实现caffe在[1]讲到如何看一个图片的特征和分类结果,但是如何批量抽取特征呢?可以使用c++的版本点击打开链接,这里我们谈下如何用Python批量抽取特征。
首先,我们要注意caffe filter_visualization.ipynb的程序中deploy.prototxt中网络每一轮的图片batch是10, 这个数刚好和oversample=true的crop数量是一
转载
2024-02-27 12:38:34
82阅读