环境准备:IDE:pycharmpython版本:python3.8外部库:tensorflow2.3、opencv4.0+、matplotlib3.5、sklearn因为python3.9好像与opencv4.0不兼容还是什么问题,3.9导入之后导入不了opencv4.0的,所以使用3.8导入库的话可以参考用到的数据集:先上代码:这一个是主体代码,就是一整个模型训练测试的,import os
i
转载
2023-11-30 12:28:44
174阅读
一、介绍TensorFlow是当前最流行的机器学习框架,有了它,开发人工智能程序就像Java编程一样简单。今天,就让我们从手写体数字识别入手,看看如何用机器学习的方法解决这个问题。二、编程环境Python2.7+TensorFlow0.5.0下测试通过,Python3.5下未测试。请参考《TensorFLow下载与安装》配置环境。三、思路没有接触过图像处理的人可能会很纳闷,从一张图片识别出里面的内
转载
2023-11-16 11:48:56
132阅读
-- 环境:win10, jupyter notebook/pycharm, python3.x, tensorflow1.3.0-gpu环境搭建看上一章首先手写字图片加载Tensorflow为我们提供了一个方便的封装,可以直接加载MNIST数据成我们期望的格式,代码如下:from tensorflow.examples.tutorials.mnist import input_datamnist
转载
2023-09-05 17:00:44
115阅读
'''
#2018-06-25 272015 June Monday the 26 week, the 176 day SZ
手写字体识别程序文件1:
定义了前向传播的过程以及神经网络中的参数,无论训练还是测试,都可以直接调用inference这个函数
问题代码:
#regularizer正则化矩阵,变量属性:维度,shape;
tf.truncated_normal_initializer 从
转载
2024-01-03 13:17:44
138阅读
手写体辨识手写体文本辨识问题可以追溯到第一代从手写体文档中识别单个字符的自动化机器。例如,你可以想象这样一个场景:邮局里信件堆积如山,因此需要借助自动化手段识别五位邮政编码,而只有正确识别,才能实现自动化和高效地分拣邮件。面对该应用场景,你可能想到多种应用,其中也许会有OCR(Optical Character Recognition,光学字符识别)软件,它读入手写体或印刷体文本,识别其中的文字后
转载
2024-04-09 12:57:53
59阅读
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)OneHot编码:One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。将类别变量转换为机器学习算法易于利用的一种形式的过程。One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分
转载
2024-01-08 20:41:00
74阅读
手写字识别对手写字体图片进行识别最重要的一点就是要将其转化为二值化(就是就是将图像上的像素点或灰度值设置为0或1,其呈现就是非黑即白)后的数据,然后再进行处理,在手写体处理中,二值化就是有手写笔画的部分用1表示,其余部分用0表示(当然也可以根据自己所写的算法进行调整)手写字识别可以用很多种算法来计算,首先用Knn算法来实现:Knn算法进行手写数字的识别# -*- coding: utf-8 -*-
转载
2023-12-07 08:27:01
179阅读
# Python 手写体识别入门指南
手写体识别是计算机视觉和机器学习中的一个重要应用。它使得计算机能够识别和解析手写的字符或数字。在这篇文章中,我们将介绍如何使用 Python 实现手写体识别的一个基本示例。
## 流程概述
下面是实现该项目的步骤:
| 步骤编号 | 步骤名称 | 描述
# Python识别手写体的实现指南
在本篇文章中,我将引导你完成一个使用Python识别手写体的项目。这一过程分为几个步骤,我们将逐步进行解说。此外,文章中也会包含一些代码示例,希望你能随着这些步骤慢慢实现识别手写体的功能。
## 整体流程
首先,让我们来看一下实现手写体识别的整体流程。
| 步骤 | 描述 |
|---
一、mnist数据描述MNIST数据集是28×28像素的灰度手写数字图片,其中数字的范围从0到9具体如下所示(参考自Tensorflow官方文档):二、原理 受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识
转载
2024-04-04 09:40:52
63阅读
先看结果在MNIST数据集10000张测试图片上的正确率测试手写数字图片(20张)原图测试结果源文件下载:没有C币的也可以到GitHub下载https://github.com/BuXianShan/Handwritten-Numeral-Recognition
声明:本文大部分程序参考《TensorFlow实战Google深度学习框架》,很适合深度学习入门的书籍。解压文件打开后如图 __pyca
本文主要是用kNN算法对字母图片进行特征提取,分类识别。内容如下:kNN算法及相关Python模块介绍对字母图片进行特征提取kNN算法实现 kNN算法分析 一、kNN算法介绍 K近邻(kNN,k-NearestNeighbor)分类算法是机器学习算法中最简单的方法之一。所谓K近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。我们将
转载
2023-11-16 23:57:17
70阅读
手写数字识别:基于PyTorch的卷积神经网络实现 一、项目概述 使用PyTorch实现一个基于卷积神经网络(CNN)的手写手写数字识别模型,通过MNIST数据集训练,实现对手写数字(0-9)的分类识别。 二、环境依赖 Python 3.x PyTorch torchvision matplotli ...
MNIST手写体识别--tensorflow对于tensorflow给出的几个版本的手写体识别的代码进行分析。其中tensorflow的mnist代码在https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/mnist1:softmax版本# Copyright 2015 The Tens
转载
2024-08-10 10:53:37
67阅读
去年买了几本讲tensorflow的书,结果今年看的时候发现有些样例代码所用的API已经过时了。看来自己维护一个保持更新的Tensorflow的教程还是有意义的。这是写这一系列的初心。
快餐教程系列希望能够尽可能降低门槛,少讲,讲透。
为了让大家在一开始就看到一个美好的场景,而不是停留在漫长的基础知识积累上,参考网上的一些教程,我们直接一开始就直接展示用tensorflow实现MNIST手写识别的
# 利用 Python 实现手写体表格定位
在现代数据处理中,手写体文本的识别和提取变得越来越重要,特别是在自动化文档处理、表单识别等领域中。本文将介绍如何使用 Python 定位手写体表格,并提供示例代码以帮助读者理解具体实现过程。
## 1. 手写体表格定位概述
手写体表格通常存在于各种文档中,比如调查问卷、申请表和学术论文等。手写体的特点是字符和行位置都不规则,因此传统的文本识别方法很
作者:Python数据科学算法作为程序员的必修课,是每位程序员必须掌握的基础。作为Python忠实爱好者,本篇东哥将通过Python来手撕5大经典排序算法,结合例图剖析内部实现逻辑,对比每种算法各自的优缺点和应用点。相信我,耐心看完绝对有收获。前戏准备大家都知道从理论上讲,我们一般会使用大O表示法测量算法的运行时复杂度。"大O表示法"表示程序的执行时间或占用空间随数据规模的增长趋势。但为了测算具体
对于人类来说,分辨出手写的数字是一件非常容易的事情。但想让机器识别数字则要困难的多。本文分别提出了基于PyTorch框架和ReLU函数的Two Layer Net(两层神经网络)手写数字识别算法和基于TensorFlow框架和Keras的卷积神经网络手写数字识别算法。并设计了实验在MNIST数据集上评估它们各自的准确率和损失值,同时测试了对自己手写学号的识别和泛化能力,并对比了两种算法的优缺点。两
转载
2023-10-09 13:50:22
404阅读
基本原理:把图片当成像素来看,下图为手写体数字1的图片,它在计算机中的存储其实是一个二维矩阵,每个元素都是0~1之间的数字,0代表白色,1代表黑色,小数代表某种程度的灰色。 对MNIST数据集中的图片来说,当成长度为784的向量就可以了,忽略它的二维结构。任务就是让这个向量经过
转载
2023-12-14 21:39:31
132阅读
基于SVM的手写字体识别1.案例背景 (1)手写体数字的识别在社会经济中的许多方面都有着广泛的应用,其识别方法也有许多种,如神经网络,Bayes判别法等。由于手写体人为因素随意性大,手写字体识别的难度远高于印刷体的识别。 (2)本次项目所用训练样本为300张256x256像素点的0~9的手写数字图片,每个数字均30 张。 (3)数据集获取:gethub下载 2.准备工作 (1)下载安装matlab
转载
2023-12-16 07:20:38
149阅读