深度神经网络应用 – 图像分类你将使用在上一个作业中实现的函数来构建深层网络,并将其应用于分类cat图像和非cat图像。 希望你会看到相对于先前的逻辑回归实现的分类,准确性有所提高。完成此任务后,你将能够:建立深度神经网络并将其应用于监督学习。1 安装包让我们首先导入在作业过程中需要的所有软件包。numpy是Python科学计算的基本包。matplotlib 是在Python中常用的绘制图形的库。
转载
2023-11-09 20:22:25
281阅读
元旦前,我们的python老师浅谈了卷积神经网路。我们都知道神经网路有三种:卷积神经网络和全连接神经网络、循环神经网络。那么我们上次已经讲过全连接神经网络了。今天和大家一起讨论卷积神经网路。 Python 我们在中学时代学过生物学都知道人类的神经由:神经元、树突、突触等等。那么计算机中的神经网络就是运用数学和生物的知识把它抽象成数学模型,再由计算机代码来实现。 脑神经 使用的神
转载
2023-10-03 20:48:32
42阅读
神经网络的参数主要有两大块,一是各神经元之间连接的权重参数,而是表示各功能神经元阈值的偏置参数。通过对损失函数使用梯度下降法,可以找到最优的权重和偏置参数,使得损失函数达到极小。神经网络原理介绍(以二层神经网络为例)如上图所示,一个简单二层神经网络包含输入层、隐层和输出层。输入的数据乘以第一层权重参数矩阵后,到达隐层,经隐层的激活函数作用后,乘以第二层权重参数矩阵后到达输出层,经输出层的激活函数处
转载
2023-08-09 17:40:40
125阅读
关键字:python、pybrain、神经网络时间:2016年12月前言pybrain,一个基于python的神经网络库。代码# -*- coding: utf-8 -*-
from pybrain.datasets import SupervisedDataSet
from pybrain.supervised.trainers import BackpropTrainer
from pybra
转载
2023-07-02 14:28:57
108阅读
零基础,手把手教你第一个神经网络,只需三步!这篇文章只是为你扫清障碍代码还是要自己打一遍,才会发现各种报错。参数要自己调试一遍。才能体会神经网络的神奇。准备工作:1、第一个人工神经网络实现目标:识别数字,让计算机学会识别如下数字,2、数据集:需要下载train set和test set两个数据集。数据分析:每一行代表一个手写数字。每行第一列是这个数字的值,从第二列开始代表像素值。3、编程语言pyt
转载
2023-10-29 21:55:25
73阅读
一、BP神经网络这里介绍目前常用的BP神经网络,其网络结构及数学模型如下:x为 n 维向量, y 为 n 维向量,隐含层有 q 个神经元。假设 N 有个样本数据,??,??,?=1,2,…?{y(t),x(t),t=1,2,…N}。从输入层到隐含层的权重记为: ???(?=1,2,..,?,?=1,2,…?)W_ki (k=1,2,..,q,i=
转载
2023-07-06 14:59:24
196阅读
在前面两篇文章介绍了深度学习的一些基本概念,本文则使用Python实现一个简单的深度神经网络,并使用MNIST数据库进行测试。 神经网络的实现,包括以下内容:神经网络权值的初始化正向传播误差评估反向传播更新权值主要是根据反向传播的4个基本方程,利用Python实现神经网络的反向传播。初始化首先定义代表神经网络的类NeuralNetwork,class NeuralNetwork:
def
转载
2023-06-16 09:23:02
155阅读
一、神经网络介绍: 神经网络算法参考人的神经元原理(轴突、树突、神经核),在很多神经元基础上构建神经网络模型,每个神经元可看作一个个学习单元。这些神经元采纳一定的特征作为输入,根据自身的模型得到输出。 图1 神经网络构造的例子(符号说明:上标[l]表示与第l层;上标(i)表示第i个例子;下标i表示矢量第i项)图2 单层神经网络示例 神经元模型是先计算一个线性函数(z=Wx+b
转载
2023-07-03 16:47:50
119阅读
DNN深度神经网络,包括:CNN(要讲全连接层等),RNN,GAN(非监督学习),DBN 1.DNN,深度神经网络,或多层神经网络,或多层感知机(Multi-Layer perceptron,MLP), 可以理解为有多个隐藏层的神经网络 这是一个全连接的神经网络,前一层的一个神经元会和下一层的每一个神经元都有连接2.CNN(c代表convolutional),卷积神经网络CNN以一定的模型对事物进
转载
2023-08-14 12:14:49
179阅读
上篇的模型中只是简单使用softmax和交叉熵,模型准确率达91%。这里再进一步提升模型准确率,模型改用神经网络。 人工神经网络以其具有学习、自组织、较好的容错性和优良的非线性逼近能力,受到众多领域学者的关注。在实际应用中,80%~90%的人工神经网络模型是采用误差反传播算法或其变化形式的网络模型(简称BP网络),目前主要应用于函数逼近、模式识别、分类和数据压缩或数据挖掘
转载
2023-08-10 11:28:39
132阅读
深度神经网络算法,是基于神经网络算法的一种拓展,其层数更深,达到多层,本文以简单神经网络为例,利用梯度下降算法进行反向更新来训练神经网络权重和偏向参数,文章最后,基于Python 库实现了一个简单神经网络算法程序,并对异或运算和0-9字符集进行预测。一、问题引入 利用如下图像结构,通过训练集对其参数进行训练,当有新的测试数据时,通过更新函数,获得正确的预测值,更新函数方程为: Oij
转载
2023-09-29 19:40:40
101阅读
神经网络是机器学习和人工智能领域中的一种常用算法,它在图像识别、自然语言处理等方面都有广泛的应用。如果你想入门神经网络,那么这篇文章就是为你准备的。首先,了解基本概念是入门神经网络的基础。神经元是神经网络的基本组成部分,它们接收输入,通过加权求和后,经过一个激活函数输出结果。权重是神经元和输入之间的连接权值,偏置是每个神经元的偏置值。掌握这些基本概念,可以更好地理解神经网络的运作机制。接下来,需要
转载
2023-08-21 17:44:44
354阅读
《python神经网络编程》一书给出了训练集,识别图片中的数字。测试集的链接如下: https://raw.githubusercontent.com/makeyourownneuralnetwork/makeyourownneuralnetwork/master/mnist_dataset/mnist_test_10.csv为了方便,这只是一个小的测试集,才10个。 训练集链接:http
转载
2024-01-24 13:22:57
85阅读
图神经网络GNN学习笔记:图的理论1. 图的概述2.图的基本类型2.1 有向图和无向图2.2 非加权图与加权图2.3 连通图与非连通图2.4 二部图2.5 邻居和度2.6 子图和路径2.7 有向图连通性2.8 最短路径和图直径2.9 度中心性2.10 特征向量中心性(Eigenvector Centrality)2.11 中介中心性(Betweeness Centrality)2.12 接近
转载
2023-09-05 09:48:35
103阅读
点赞
导读:神经网络接受输入图像/特征向量,并通过一系列隐藏层转换,然后使用非线性激活函数。每个隐藏层也由一组神经元组成,其中每个神经元都与前一层中的所有神经元完全连接。神经网络的最后一层(即“输出层”)也是全连接的,代表网络的最终输出分类。人工智能常用的十大算法 人工智能数学基础(一) 人工智
转载
2023-11-27 10:11:23
35阅读
Attention可以说是当今深度学习领域最强大的概念之一。基于基本的常识,我们在处理大量信息时,通常会“关注”某一部分。这个简单而强大的概念彻底改变了这个领域,不仅在自然语言处理(NLP)任务方面带来了许多突破,而且在推荐、医疗保健分析、图像处理、语音识别等领域也带来了很多突破。因此,在本系列文章中,将阐述神经网络中注意力机制的发展,重点放在应用和现实世界的部署上。将尝试用Pytorch从头开始
转载
2023-11-21 10:40:29
52阅读
Lenet 神经网络在 Mnist 数据集上的实现,主要分为三个部分:前向传播过程(mnist_lenet5_forward.py)、反向传播过程(mnist_lenet5_backword.py)、测试过程(mnist_lenet5_test.py)。第一,前向传播过程(mnist_lenet5_forward.py)实现对网络中参数和偏置的初始化、定义卷积结构和池化结构、定义前向传播过程。#c
转载
2023-10-26 20:26:02
47阅读
AI初学笔记10 卷积神经网络 文章目录AI初学笔记10 卷积神经网络一、CNN原理说明二、CNN网络结构及参数三、程序实现1. 加载数据2. 定义类3. 优化器及训练过程总结 一、CNN原理说明在处理图像问题中,图像的每一个像素值都与周边的像素值存在一定的联系,而使用全连接网络的话,则会损失掉这种空间特征,导致最终准确率下降。 为了提取出这种图像问题中的空间特征,采用如下图所示的卷积神
转载
2023-08-11 14:55:48
103阅读
BP神经网络相关概念什么是神经网络? 神经网络是由很多神经元组成的,用个比较粗浅的解释,可能不太全面科学,但对初学者很容易理解: 我们把输入数据,输进去神经网络这些数据的每一个都会被乘个数,即权值w,然后这些东东与阀值b相加后求和得到u上面只是线性变化,为了达到能处理非线性的目的,u做了个变换,变换的规则和传输函数有关 可能还有人问,那么那个阀值是什么呢?简单理解就是让这些数据做了个平移,这就
转载
2023-09-28 13:31:40
195阅读
前馈网络一般指前馈神经网络或前馈型神经网络。它是一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层,数据正想流动,输出仅由当前的输入和网络权值决定,各层间没有反馈。包括:单层感知器,线性神经网络,BP神经网络、RBF神经网络等。 递归神经网络(RNN)是两种人工神经网络的总称。一种是时间递归神经网络(recurrent neural n
转载
2018-11-15 22:17:00
636阅读