1 简介一种基于模糊小波神经网络的水质评价预测方法,目的在于解决BP神经网络在进行水质预测时收敛速度较慢,逼近效果差,预测结果不精准的问题,以已知水质分析指标个数为,预测指标个数,模糊规则数构建模糊小波神经网络预测模型,模糊小波神经网络预测模型包括输入层,隶属层,模糊规则层,小波层,输出层和解模糊层;对隶属函数参数,小波层的小波参数进行调整,并定义代价函数,使用以梯度下降法为基础的BP算法进行参数
转载 2023-06-07 14:10:35
107阅读
深度学习基本概念 一、实验介绍 1.1 实验内容深度学习并没有你想象的那么难,本课程将会一边讲解深度学习中的基本理论,一边通过动手使用python实现一个简单的深度神经网络去验证这些理论,让你从原理上真正入门深度学习。深度学习中的一些最基本的概念,本次实验很重要,理解这些概念是继续深入学习的基础。 1.2 实验知识点如何让机器“学习”神经网络的概念有监督与无监督学习的区别回归与分类的区别损失函数
Python 深度学习-神经网络入门第一次写博客,也是刚刚接触神经网络的小白,所以想将自己的学习到的一点点知识分享给大家,同时也可以加深对神经网络的理解详细信息语言:python 框架:Keras IDE:jupyter notebook 处理问题:电影评论分类(二分类)、新闻主题分类(多分类)、预测房价(回归问题)一、 电影评论分类(二分类): 本节使用IMDB数据集,它包含来自互联网电影数据库
目录模糊理论Fuzzy SetFuzzy set operationsFuzzy Min Max Classifier应用:基于模糊神经网络的水轮机调速器PID控制 模糊理论在本篇内容中,我们将了解模糊神经网络(Fuzzy Neural Network),在此之前,先了解模糊理论。现实世界总是充满不确定性。因此,在建模系统的时候,我们需要考虑这种不确定性。我们之前其实已经在概率论中接触过这种不确
部分bankloan数据如下: 1.利用神经网络模型预测import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense,Dropout # 参数初始化 inputfile = r'C:\Users\22977\Desktop\Study\py
自适应模糊神经推理系统    人工神经网络有较强的自学习和自适应能力,但它类似一个黑箱,缺少透明度,不能很好地表达人脑的推理功能,而模糊系统本身没有自适应能力,限制了其应用。   自适应模糊神经推理系统(Adaptive Neuro-FuzzyInference System)也称为基于网络的自适应模糊推理系统(Adaptive Network-based
第一章 神经网络如何工作 文章目录第一章 神经网络如何工作1.1 尺有所长,尺有所短——关键点1.2 一台简单的预测机——关键点1.4 训练简单分类器——关键点1.5 有时候一个分类器不足以求解问题——关键点1.6 神经元-大自然的计算机器——关键点1.8 凭心而论,矩阵乘法大用用途——关键点1.12 反向传播误差到更多层中——关键点1.12 使用矩阵乘法进行反向传播误差——关键点1.14 我们实
前沿:先学习本篇文章之前,建议大家先学习我编写的上一篇“使用Python从头实现一个神经网络”,再来学习学习本篇使用神经网络进行房价预测。介绍:本次使用神经网络进行房价的预测,利用数据样本学习,得到相关因素预测房价。数据介绍:数据来源:使用爬虫工具爬取广州某小区的售房信息。爬取到的数据如下:选取变量共有380条数据,七项指标,选取其中五项指标,分别为总价,面积、房间数量、客厅数量、建造年份。选取房
  临近春节没啥事做,突然想起前两年未完成的模糊神经网络,当时是学了一段时间,但是到最后矩阵求偏导那块始终不对,最后也不了了之了,趁最近有空,想重新回顾回顾,看看会不会产生新的想法。经过不断尝试后,竟然达到了想要的效果,所以简要记录一下留个笔记。以下内容只讲干货,不玩虚的。0 引言  模糊神经网络结合了模糊控制与神经网络两者的优点,不仅具备对非线性、时变、模型不完全系统的控制,同时还具备很好的自学
本发明涉及模糊神经网络BP训练过程中的步长优化方法,属于优化算法领域。背景技术:模糊神经网络模糊系统同神经网络相结合的产物,作为模糊系统,能够很好地描述不确定信 息或定性的知识,能充分利用已有的知识来设计系统结构和配置初始值,且现在已能直接从检测数据中提 取模糊规则来初始化参数;作为神经网络,能利用BP算法进行自学习,并已证明能以很好的精度逼近期 望的模型。因此被广泛应用于智能控制与软测量建模等
浅层神经网络模型python实现 文章目录浅层神经网络模型python实现注:1.准备工作导入需要的包testCases.pyplanar_utils.py导入数据集可视化数据集2. 采用逻辑回归模型分类(可选)3. 采用神经网络模型获取每层size初始化参数前向传播计算函数代价反向传播合成模型预测函数测试模型计算正确率尝试不同layer size(可选)尝试其他数据集 注:数据集及详细讲解请查找
三层结构模拟大脑神经活动 在实际应用中,80%~90%的人工神经网络模型是采用误差反传算法或其变化形式的网络模型。 隐藏层:信息处理过程 输入输出层:just数据的入出 权值概念先知设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定;神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别;结构图里的关键不是圆圈(代表“神经元”),而是连接线(
Audio-visual emotion recognition using FCBF feature selection method and particle swarm optimization for fuzzy ARTMAP neural networks基于FCBF特征选择和粒子群优化的模糊ARTMAP神经网络视听情感识别摘要:人类使用面部、言语和身体手势等多种方式来表达自己的情感。因
图像获取功能:该模块的功能是从图像库中获取图片,获取的图像必须能够在开发环境中可以显示,以便进行图像的处理和识别。图像预处理功能:该模块的功能包括图像光线强弱的补偿,图像的灰度化处理,去噪,均衡化后的直方图,以此达到图像对比后增强的目的。 图像特征提取功能:改模块的功能是在处理后的图像进行训练,然后将训练后的图像的眼睛,鼻子,嘴巴等生物特征提取出来。图像识别功能:该模块部分是将需要进行检测的图
由于模糊控制是建立在专家经验的基础之上的,但这有很大的局限性,而人工神经网络可以充分逼近任意复杂的时变非线性系统,采用并行分布处理方法,可学习和自适应不确定系统。利用神经网络可以帮助模糊控制器进行学习,模糊逻辑可以帮助神经网络初始化及加快学习过程。
转载 2022-10-18 17:22:00
383阅读
1 简介一种基于模糊小波神经网络的水质评价预测方法,目的在于解决BP神经网络在进行水质预测时收敛速度较慢,逼近效果差,预测结果不精准的问题,以已知水质分析指标个数为,预测指标个数,模糊规则数构建模糊小波神经网络预测模型,模糊小波神经网络预测模型包括输入层,隶属层,模糊规则层,小波层,输出层和解模糊层;对隶属函数参数,小波层的小波参数进行调整,并定义代价函数,使用以梯度下降法为基础的BP算法进行参数
人工神经网络在模块keras中,实现步骤如下:#bp人工神经网络的实现#1、读取数据#2、导入对应模块,keras.models  Sequential(建立模型)  |keras.layers.core Dense(建立层)  Activation#3、Sequential建立模型#4、Dense建立层#5、Activation激活函数#6、compile模型编译#
  神经网络(Artificial Neural Network):全称为人工神经网络(ANN),是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)的结构和功能的数学模型或计算模型。 部分原理:下面是单个神经元的数学模型: +1代表偏移值(偏置项, Bias Units);X1,X2,X2代表初始特征;w0,w1,w2,w3代表权重(Weight),即参数,是特
我们初步认识了神经网络的基本概念(如神经元、多层连接、前向计算、计算图)和模型结构三要素(模型假设、评价函数和优化算法)。本节将以“波士顿房价”任务为例,向读者介绍使用Python语言和Numpy库来构建神经网络模型的思考过程和操作方法。波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“Hello World”。和大家对房价的普遍认知相同,波士顿地区的房价是由诸多因素影响的。该数据集统计
基于Paddle Paddle学习波士顿房价预测任务上一节我们初步认识了神经网络的基本概念(如神经元、多层连接、前向计算、计算图)和模型结构三要素(模型假设、评价函数和优化算法)。本节将以“波士顿房价”任务为例,向读者介绍使用Python语言和Numpy库来构建神经网络模型的思考过程和操作方法。波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“Hello World”。和大家对房价的普遍
  • 1
  • 2
  • 3
  • 4
  • 5