深度学习卷积神经网络(CNN) – Keras & TensorFlow 2你会学到什么 深梦 数据扩充 利用光彩造型修护发膏 开始 数据扩充 Con2D MaxPooling2D 提前停止 Matplotlib 混淆矩阵 熊猫 数组 最小最大缩放器 Google Colab 深度学习。 训练神经网络。 将数据分为训练集和测试集。 测试准确性。 混乱矩阵。 做个预测。 模型编译。MP4
转载
2023-10-13 00:01:52
84阅读
PS. 代码部分参考了这篇文章,对代码做了整合 :https://www.jianshu.com/p/abb7d9b82e2a 理论部分主要参考了花书。 从底层开始复习。在常见的面试中,难免会问及卷积网络,因而这里第二部分主要回顾一下卷积的基础知识。以及如果不
转载
2024-04-08 10:18:03
39阅读
对TCN时空卷积网络进行简单的python实现,用于理解TCN网络运行机制并以备后查,运行环境为python3.8.6 ,创建项目目录如下: 1.其中test.csv和train.csv分别为测试和训练数据,为随机创建的回归数据,columns =[ a1,a2,a3,a4,a5,a6,a7,a8,y] 其中y是标签列; 2.run.py为执行脚本,实现训练-输出模型-测试-输出测试结果
转载
2023-10-08 07:46:42
510阅读
卷积神经网络(LeNet)附代码LeNet 模型代码描述获取数据和训练小结 LeNet 模型LeNet 模型分为卷积层和全连接层两个部分。下面我们分别介绍: 卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的空间模式,例如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。在卷积层快中,每个卷积层都用5×5的窗口,并在输出上使
转载
2023-10-10 11:39:07
41阅读
卷积神经网络名字听着挺吓人,本文用通俗易懂的方式解释。人人都能看懂。 文章目录卷积是什么一、卷积神经网络介绍卷积层--提取局部图片特征扩充--padding,保持卷积后图片的长和宽保持不变池化层---降低维度,降低模型复杂度和计算量flatten展平--让多维数据变成一个巨大的一维向量全连接层--输出结果二、TensorFlow2代码实现1.导入数据2.用TensorFlow2构建一个CNN网络总
转载
2023-11-10 11:31:33
252阅读
1、卷积神经网络通俗理解卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shi
转载
2023-08-16 11:29:57
75阅读
文章目录1.卷积神经网络中的相关计算问题2.通过一个实例学习卷积神经网络的构建3.卷积神经网络相关内容 1.卷积神经网络中的相关计算问题(1)单纯的二维卷积(2)加入填充(padding) 注:下图中的ph为在代码中设置的padding值的二倍(3)加入填充(padding)和步幅(stride)卷积核和过滤器(fliter)是有区别的,卷积核是二维概念,过滤器由一个或者多个卷积核拼成。2.通过
转载
2024-04-08 10:21:02
28阅读
《卷积神经网络的Python实现》笔记2卷积神经网络CNN卷积层卷积运算卷积层的初实现包含步长的卷积层实现批量数据的卷积层矩阵乘法的代码实现池化层全连接层 卷积神经网络CNN下文将实现卷积层,池化层,全连接层的代码。对于卷积层代码将多次重复实现,主要区别在代码优化上。卷积层卷积运算import numpy as np
h = 32 #输入数据的高度
w = 48 #输入数据的宽度
input_
转载
2023-06-16 19:48:20
181阅读
1、cnn卷积神经网络的概念卷积神经网络(CNN),这是深度学习算法应用最成功的领域之一,卷积神经网络包括一维卷积神经网络,二维卷积神经网络以及三维卷积神经网络。一维卷积神经网络主要用于序列类的数据处理,二维卷积神经网络常应用于图像类文本的识别,三维卷积神经网络主要应用于医学图像以及视频类数据识别。2、卷积神经网络结构卷积神经网络通常包含以下几层:卷积层:卷积神经网路中每层卷积层由若干卷积单元组成
转载
2023-10-11 20:36:33
871阅读
目录代码实例最后结果模型草图代码实例import numpy as np
import tensorflow.compat.v1 as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
tf.compat.v1.disable_eager_execution()
转载
2023-05-27 16:15:47
191阅读
目录1、网络结构2、各层详解1)卷积层(conv)A、概念解释B、实现过程C、多维输入数据计算D、卷积层代码实现2)池化层(pooling)A、实现过程B、池化层代码实现3)激活层A、sigmoid函数B、阶跃函数C、relu函数4)affine层5)dropout层6)softmax-with-loss层A、损失函数介绍B、softmax-with-loss层结构介绍C、代码实现1、网络结构11
转载
2023-09-14 17:48:58
130阅读
# 用卷积神经网络处理序列 1. 实现一维卷积神经网络 Keras 中的一维卷积神经网络是 Conv1D 层,其接口类似于 Conv2D。它接收的输入是形状 为 (samples, time, features) 的三维张量,并返回类似形状的三维张量。卷积窗口是时间轴上的一维窗口(时间轴是输入张量的第二个轴)。我们来构建一个简单的两层一维卷积神经网络,并将其应用于我们熟悉的 IMDB 情
转载
2023-08-12 20:16:06
113阅读
第7章 卷积神经网络第7章 卷积神经网络7.1 整体结构7.2 卷积层7.2.1 全连接层存在的问题7.2.2 卷积运算7.2.3 填充7.2.4 步幅7.2.5 3维数据的卷积运算7.2.6 结合方块思考7.2.7 批处理7.3 池化层7.4 卷积层和池化层的实现7.4.1 4维数组7.4.2 基于 im2col的展开 第7章 卷积神经网络本章的主题是卷积神经网络(Convolutional
转载
2023-11-01 19:12:48
49阅读
卷积神经网络的应用在此笔记本中,你将:实现模型构造所需的辅助函数使用TensorFlow实现功能全面的ConvNet完成此作业后,你将能够:用TensorFlow构建和训练ConvNet解决分类问题1 TensorFlow模型在上一项作业中,你使用numpy构建了辅助函数,以了解卷积神经网络背后的机制。实际上现在大多数深度学习的应用都是使用编程框架构建的,框架具有许多内置函数,你可以轻松地调用它们
转载
2023-09-01 22:02:32
169阅读
文章目录卷积神经网络1. 卷积神经网络的实现1.1 使用im2col1.2 池化层的实现2. CNN 的实现2.1 构建网络2.2 开始训练写在最后 注:书的源代码下载如下书本源代码下载地址 点击右侧资源则可以下载对应的代码卷积神经网络1. 卷积神经网络的实现在卷积神经网络中,我们需要考虑batch输入,则对于一个图像的输入,我们可以将其视作一个四维数组,其定义如下import numpy as
转载
2023-09-16 13:56:14
232阅读
目录LeNetAlexNetVGGNetInceptionNet (GoogleNet)ResNet总结 LeNetclass LeNet5(Model):
def __init__(self):
super(LeNet5, self).__init__()
self.c1 = Conv2D(filters=6, kernel_size=(5, 5),
转载
2023-06-30 20:47:51
284阅读
详解卷积神经网络(CNN)卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。概揽卷积神经网络(Convolutional Neural Networks / CNNs / ConvNets)与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经
转载
2023-10-13 16:10:02
397阅读
上一讲我说到了线性回归模型,它可以帮助我们解决房价预测等回归、拟合的问题,我们也可以对回归方程 f(x)输出加一个 Sigmoid 函数,使其也能应用在分类问题上。但现实中除了分类问题还有很多不同的场景,会用到图像算法、文本算法、音视频算法等等。今天,就让我来带你学习卷积神经网络(Convolutional Neural Networks,CNN)在图像,音频上的应用。卷积神经网络在人脸识别、智慧
转载
2023-09-13 23:13:48
2阅读
resnet前言一、resnet二、resnet网络结构三、resnet181.导包2.残差模块2.通道数翻倍残差模块3.rensnet18模块4.数据测试5.损失函数,优化器6.加载数据集,数据增强7.训练数据8.保存模型9.加载测试集数据,进行模型测试四、resnet深层对比 前言随着深度学习的不断发展,从开山之作Alexnet到VGG,网络结构不断优化,但是在VGG网络研究过程中,人们发现
转载
2023-07-17 13:41:54
205阅读
卷积神经网络详解guodongwe1991机器学习算法与Python学习注:看本文之前最好能构理解前馈圣经网络以及BP(后向传播)算法,可以看之前发的相关文章或者看知乎、简书、博客园等相关博客。卷积神经网络(ConvolutionalNeuralNetworks,CNN)是一种前馈神经网络。卷积神经网络是受生物学上感受野(ReceptiveField)的机制而提出的。感受野主要是指听觉系统、本体感
原创
2021-04-08 19:15:28
799阅读