文章目录一、集合(一)基本使用1.用途2.定义3.需要掌握操作类型及内置使用方法(1)关系运算(2)去重4.了解操作类型及内置使用方法(1)循环(2)update()(3)clear()(4)pop()(5)remove()(6)discard()(7)add()(8)isdisjoint()(二)该类型总结1.存值个数2.是否有序3.是否可变(二)该类型总结1.存值个数2.是否有序3.是否
目录一、set-集合类型集合类型转化二、关系运算1、交集(&)2、并集(|)3、差集(-)4、对称差集(^)5、父子集一、set-集合类型""" 定义:在{}内用逗号分隔开多个元素,集合具备以下三个特点: 1:每个元素必须是不可变类型 2:集合内没有重复元素 3:集合内元素无序 """ s = {1,2,3,4} # 本质 s = set({1,2
转载 2024-01-12 00:49:41
103阅读
python组合类型集合集合类型定义集合操作符集合处理方法集合应用场景序列类型及操作序列类型定义序列处理函数及方法元组类型及操作列表类型及操作字典类型及操作字典类型定义字典处理函数及方法 集合集合类型定义集合就是多个元素无序组合,在python集合类型与数学中集合概念一致,集合元素间具有无序性,互异性,唯一性。集合元素不可更改并且不能是可变数据类型。 python集合用一对大括号{}
简介Java集合工具包位于java.util包下,包含了很多常用数据结构,如数组、链表、栈、队列、集合、哈希表等。学习Java集合框架下大致可以分为如下五个部分:List列表、Map映射、Set集合、迭代器(Iterator、Enumeration)、工具类(Arrays、Collections)。Java集合整体框架如下:此图来源于大图可以点此访问从上图中可以看出,集合类主要分为两大类:C
作者:丁香花下Python入门之集合一、什么是集合除了列表,元组和字典,集合也是Python语言提供内置数据结构之一,可以把集合看作是没有存储value字典,因此集合特点如下:1. 集合中不可以存储重复数据;2. 集合数据是无序;3. 集合数据可以是任何不可变类型,多种类型数据可以混合存储在一个集合中;4. 集合可以根据需要动态伸缩,也就是说,系统会根据需要动态分配和回收内
作者:小伍哥Python集合类似于数学中集合概念,它是一组无序、不可重复数据组合。集合用{ ...}创建,某种程度上可以把集合看作是没有值字典。集合Python里面非常重要数据类型,其中方法总共有17个,数量掌握这些方法,对数据处理效率会大大提高,特别是在计算字符串长度,交集并集等,非常有用现在分享给大家。#获取集合所有方法print(dir(set()))[..., 'ad
转载 2023-07-05 14:52:19
57阅读
如何选择特征根据是否发散及是否相关来选择方差选择法先计算各个特征方差,根据阈值,选择方差大于阈值特征方差过滤使用到是VarianceThreshold类,该类有个参数threshold,该值为最小方差阈值,然后使用fit_transform进行特征值过滤 相关系数法先计算各个特征对目标值相关系数,选择更加相关特征 递归特征消除法使用一个基模型来进行多轮训练,经过多轮
转载 2023-05-30 11:15:03
244阅读
 特征选择,也就是从数据集中找出并选择最有用特征过程,是机器学习工作流中一个非常重要步骤。不必要特征降低了训练速度,降低了模型可解释性,最重要是降低了测试数据集泛化能力。在做机器学习问题过程中,我们总是在重复应用一些特征选择方法,这很令人沮丧。因此我用 Python 建了一个特征选择类,代码已上传至 GitHub。这个 FeatureSelector 包含一些通用特征选择
---脚本语言(scripting language) ---高级动态编程语言 简单易学 Python是一种代表简单主义思想语言。Python这种伪代码本质是它最大优点之一。它使你能够专注于解决问题而不是去搞明白语言本身。Python有极其简单语法,极易上手。 解释性&编译性 -Python语言写程序不需要编译成二进制代码。可以直接从源代码运行程序,但
转载 2023-08-12 22:35:14
96阅读
完成数据清理后,下面通过图表展开对数据分析。1.前期初判(分布分析): 1)判断分组区间:# a.散点图: plt.scatter(data[字段1],data['字段2'], s = data[字段3], # 显示大小 c = data[字段4], # 显示颜色 alpha = 0.4, cmap = 'Reds') # b.直方图: data[字段].hist(bins=10) 2)求出
转载 2023-08-11 17:09:57
94阅读
特征融合作用与手段特征融合有什么用? 特征融合是一种机器学习技术,它主要目的是将来自多个不同源特征(或特征提取器)合并为一个更好特征表示,以提高模型性能。 以下是特征融合几个用途: 1.提高分类准确率:通过将不同特征组合在一起,可以提高模型分类准确率。例如,在计算机视觉中,可以将图像颜色特征和纹理特征融合在一起,以获得更好分类结果。 2.提高模型鲁棒性:使用多个特征可以使模型
 要将机器学习算法应用于时间序列数据,需要特征工程帮助。例如,单变量时间序列数据集由一系列观察结果组成,它们必须被转换成输入和输出特征,才能用于监督性学习算法。但这里有一个问题:针对每个时间序列问题,你可以处理特征类型和数量,却并没有明确限制。当然,古典时间序列分析工具(如相关图correlogram)可以帮助评估滞后变量(lag variables),但并不能直接帮助开发
作者:Will Koehrsen 前戏 用这个工具可以高效构建机器学习工作流程。一起来了解一下这个工具吧。特征选择是在数据集中寻找和选择最有用特征过程,是机器学习pipeline中一个关键步骤。不必要特征降低了训练速度,降低了模型可解释性,最重要是,降低了测试集泛化性能。我发现自己一遍又一遍地为机器学习问题应用特别的特征选择方法,这让我感到沮丧,于是我在Python中构建了一个
转载 2023-08-24 23:30:30
234阅读
    在上一节合集中,我们了解了Python字典增删改及推导式相关知识,本节我们将进一步了解一下Python集合相关知识。Python集合同数学中集合概念类似,也适用于保存不重复元素,他有可变集合和不可变集合两种。在形式上,集合所有元素都放在一对{}中,两个相邻元素间使用,分隔,集合最好应用就是去掉重复元素。 在Python中提供了两种创建
转载 2023-06-14 18:39:34
83阅读
************************集合***********************总结可变数据类型: 列表, 字典, 集合不可变数据类型: 数值类型, 字符串, 元组- 可变数据类型实现某个功能, 直接改变可变数据类型;- 不可变数据类型实现某个功能,需要将结果赋值给另外一个变量;是否实现for循环可迭代数据类型: str, list, tuple, dict, set不可迭代数
 一.特征选择-单变量特征选择1.SelectKBest可以依据相关性对特征进行选择,保留k个评分最高特征。方差分析分类问题使用f_classif,回归问题使用f_regression。f_classif:分类任务跟目标的分类,将样本划分成n个子集,S1,S2,..,Sn,我们希望每个子集均值μ1,μ2,...,μn不相等。我们假设H0:μ1=μ2=...=μn,当然我们希望拒绝H0
python五个特点久是简单易学;既支持面向过程编程,也支持面向对象编程;可移植性;不需要编译成二进制代码,可以直接从源代码运行程序;是开源软件之一,那么python五个特点是什么?下面就给大家具体介绍一下。1、面向对象:Python既支持面向过程编程,也支持面向对象编程。在“面向过程”语言中,程序是由过程或仅仅是可重用代码函数构建起来。在“面向对象”语言中,程序是由数据和功能组合而成
特征选择就是从原始特征中选取一些最有效特征来降低维度,,提高模型泛化能力减低过拟合过程,主要目的是剔除掉无关特征和冗余特征,选出最优特征子集; 常见特征选择方法可以分为3类:过滤式(filter)、包裹式(wrapper)、嵌入式(embedding)。1.过滤式filter: 通过方差选择法、相关系数法、卡方检验法、互信息法来对特征进行评分,设定阈值或者待选择阈值个数来选择; 1.1方
一、Standardization方法一:StandardScalerfrom sklearn.preprocessing import StandardScaler sds = StandardScaler() sds.fit(x_train) x_train_sds = sds.transform(x_train) x_test_sds = sds.transform(x_test)方法二:
最近几天了解了一下人脸识别,应用场景可以是图片标注,商品图和广告图中有没有模特,有几个模特,模特性别,年龄,颜值,表情等数据挖掘。基础识别用dlib来实现,dlib是一个机器学习包,主要用C++写,但是也有Python版本。其中最流行一个功能是Facial Landmark Detection, 配备已经训练好轮廓预测模型,叫shape_predictor_68_face_landm
  • 1
  • 2
  • 3
  • 4
  • 5