2022年数学建模美赛B题数据爬取背景2022年的美赛刚刚落下帷幕,该题的一个主要难点在于数据的获取。很多人无法找到有效的数据,或者是无法获取数据。比如找到了如下米德湖的水文数据,但是发现并没有提供直接下载数据的功能Lake Mead Water Database (water-data.com)这种情况就需要实现一个简单爬虫去获取数据准备Python可以实现多种爬虫方法,如selenium,关于
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。1.项目背景GBDT是Gradient Boosting Decision Tree(梯度提升树)的缩写。出版社在对图书进行定价时会考虑图书的页数、纸张、类别、内容、作者及读者等很多因素,用人工来分析较为烦琐,并且容易遗漏。如果能建立一个模型综合考虑各方面因素对图书进行定价,那么
转载
2023-07-17 21:54:12
162阅读
并发上传基于py自带模块concurrent.futures import ThreadPoolExecutor#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# @Time: 2020/11/22 10:13
# @Author:zhangmingda
# @File: ks3_multi_thread_for_concurrent.future
转载
2023-12-28 11:31:51
42阅读
Kolmogorov-Smirnov是比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布的检验方法。其原假设H0:两个数据分布一致或者数据符合理论分布。D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设。
KS检验与t-检验之类的其他方法不同是KS检验不需要知道数据的分布情况,可以算是一种非参数检验方法。当然这样方便的代价就是当检验的数
转载
2023-09-14 14:51:25
193阅读
已经有10年的历史了,在国外十分盛行。Google搜索引擎的脚本,现在流行的BT(BiteTorrnet),还有著名的应用服务器Zope都是用Python编写的。但在国内的使用还不是很多。她十分有自己的特色。语法简洁,但功能强大,可以跨平台使用,在Linux、Windows和Mac上都有很好支持。她的设计很出色。这里有两个Python的使用例子,都是对磁盘文件的操作,以次来看看Python的特色。
目录混淆矩阵KS曲线与ROC曲线KS曲线ROC曲线KS曲线与ROC曲线之间的关系洛伦兹曲线与Gini系数Lift曲线Gain曲线PSIPython代码参考混淆矩阵KS曲线与ROC曲线KS曲线KS检验:比较频率分布\(f(x)\)与理论分布\(g(x)\)或两个观测值分布的是否一致检验方法,原假设两个数据分布一致或数据符合理论分布,统计量\(D=max|f(x)-g(x)|\)KS值计算步骤:对变量
转载
2023-10-20 23:30:23
366阅读
KS检验及其在机器学习中的应用什么是KS检验Kolmogorov–Smirnov 检验,简称KS检验,是统计学中的一种非参数假设检验,用来检测单样本是否服从某一分布,或者两样本是否服从相同分布。在单样本的情况下,我们想检验这个样本是否服从某一分布函数
,记
是该样本的经验分布函数。我们构造KS统计量:
如下图,经验分布函数与目标分布的累积分布函数的最大差值就是我们要求
转载
2023-11-13 13:32:30
349阅读
1. 第八章 模块和包本章的主题就是模块和包。较大的Python程序基本上都使用模块和包进行组织,Python发行版也包括方方面面许许多多的模块...1.1. 模块你可以使用import语句将一个源代码文件作为模块导入.例如:# file : spam.pya = 37
转载
2023-11-13 17:06:14
92阅读
转载
2024-04-24 14:59:56
131阅读
在现代软件开发中,Python作为一种广泛应用的编程语言,拥有成熟的开发生态和丰富的库支持。然而,随着应用规模的扩大和用户需求的不断变化,Python的性能优化和故障检测变得至关重要。特别是在机器学习和数据分析领域,如何进行ks检测(Kolmogorov-Smirnov 检验)成为了数据理解的重要一环。
## 背景定位
在数据科学的业务场景中,ks检验通常用于比较两个样本的分布差异,以此来验证
# KS指标与Python的应用
KS指标(Kolmogorov-Smirnov Test)是一种用来比较两个分布之间差异的非参数检验方法。它在统计学中广泛应用,特别是在机器学习和数据分析中,用于评估模型的表现和数据分布的相似性。
## KS指标的基本原理
KS指标的基本思想是通过计算两个经验分布函数之间的最大差异,进而判断它们是否来自相同的分布。假设我们有两个样本数据集,分别为`X`和`Y
Kolmogorov-Smirnov是比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布的检验方法。其原假设H0:两个数据分布一致或者数据符合理论分布。D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设。KS检验与t-检验之类的其他方法不同是KS检验不需要知道数据的分布情况,可以算是一种非参数检验方法
转载
2023-10-18 22:06:34
327阅读
Python中可以使用ks-test(Kolmogorov-Smirnov检验)来计算两个样本之间的距离。下面是一个教程,用于指导刚入行的开发者实现“python ks 计算”。
# Python KS 计算教程
## 步骤概览
下面是一份流程表格,展示了实现“python ks 计算”的步骤:
| 步骤 | 描述 |
|---|---|
| 1 | 导入所需的库 |
| 2 | 载入样本
原创
2024-01-06 06:36:07
233阅读
# 使用Python计算Kolmogorov-Smirnov检验
Kolmogorov-Smirnov(KS)检验是一种非参数统计检验,用于比较两个样本的分布,或者一个样本分布与一个已知分布的差异。它的主要目的是判断两个样本是否来自相同的分布。本文将介绍如何在Python中进行KS检验,并提供相应的代码示例。
## KS检验的基本原理
KS检验的核心思想是计算样本的经验分布函数(ECDF),
原创
2024-09-13 05:41:07
89阅读
# KS检验:理解与实现
在数据分析的世界中,我们常常需要判断两个样本是否来自相同的分布。Kolmogorov-Smirnov检验(简称KS检验)便是一种常用且有效的非参数统计方法。本文将为您介绍KS检验的基本概念、其在Python中的实现,并结合示例来帮助理解。
## 什么是KS检验?
KS检验主要用于比较两个样本的分布,能够帮助我们判断这些样本是否来自同一分布。与其他检验方法不同,KS检
上周实习工作中用到了聚类分析的相关内容,故又对聚类分析算法重温一遍,中间发现我前面所写博客有两个比较关键的步骤是缺失的:利用肘部法则估计参数数目利用轮廓系数评估聚类算法的优劣Python有现成的轮子,只需更改传入的数据集即可 由于我所有的数据、代码及结果均在公司所配电脑上,所以以下仅附上Python的实现。本文参考博客:成本(目标)函数其实在博文中已经提到过,我们要寻找的聚类是使得类内离差平方和
## 计算KS值的Python实现
### 概述
在金融领域的风控模型评估中,KS值常常被用来评估模型的区分度。KS值是一种常见的评估指标,用于衡量模型在正负样本之间的区分度。本文将介绍如何使用Python计算KS值。
### 流程
下面是计算KS值的整体流程:
| 步骤 | 描述 |
| --- | --- |
| 1 | 准备数据:包括预测概率和真实标签 |
| 2 | 根据预测概率和真
原创
2023-07-23 08:03:13
1245阅读
在本文中,我们探讨的是“ks计算python”相关的技术问题。对于数据分析和统计模型,ks(Kolmogorov-Smirnov)检验是一个常用的非参数检验方法,因此在Python的实现上尤为重要。以下将详细描述ks计算在Python中的实际应用过程,包括不同版本间的对比、迁移指导及兼容性处理等内容。
## 版本对比
在研究ks计算的Python库时,我们发现`scipy`是实现ks检验的一个
# Python求ks(Kolmogorov-Smirnov检验)指南
在数据分析和统计中,Kolmogorov-Smirnov检验(KS检验)常用于比较两个样本的分布或一个样本与一个参考分布之间的差异。今天,我们将一起学习如何在Python中实现K-S检验。
## 流程概述
下面是进行KS检验的步骤:
| 步骤 | 描述 |
|-------|-
人以类聚,物以群分,k-means聚类算法就是体现。数学公式不要,直接用白话描述的步骤就是:1.随机选取k个质心(k值取决于你想聚成几类)2.计算样本到质心的距离,距离质心距离近的归为一类,分为k类3.求出分类后的每类的新质心4.判断新旧质心是否相同,如果相同就代表已经聚类成功,如果没有就循环2-3直到相同用程序的语言描述就是:1.输入样本2.随机去k个质心3.重复下面过程知道算法收敛: 
转载
2024-09-12 15:25:35
46阅读