1.介绍下python的requests模块想必会Python基础的小伙伴们一看就懂了2.Requests接口自动化测试:2.1如何利用这么利器进行接口测试,请看小demo:# -*- coding:utf-8 -*
import requests
def test():
url = "http://120.24.239.**:9080/user/app/get_sys_time.do" #测试的
转载
2023-12-01 22:08:16
46阅读
概念双样本T检验在于检验两个样本均值差异是否显著。比如男女消费是否显著。Python代码逻辑:①构造2个样本;②先进行方差齐性检查,我们规定一个阈值,这2个样本方差齐性的p-value大于0.05说明满足方差相等,可以进行双样本T检验;③进行双样本T检验,p值越大说明消费水平越相同,一般认为p大于0.05说明没啥差异(两样本比较相似),当p小于0.05说明有差异(两样本差距比较大);代码如下:fr
转载
2023-07-10 20:10:54
167阅读
原理:T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的32313133353236313431303231363533e59b9ee7ad9431333431353937差异是否显著。它与f检验、卡方检验并列。意义:T检验对数据的正态性有一定的耐受能力。如果数据只是稍微偏离正态,结果仍然是稳定的。如果数据偏离正态很远,则需要考虑数据转换或采用非参数方法分析。两个独立样本T检验的原假设
转载
2024-04-11 08:52:09
76阅读
# Python T检验p值
在统计学中,t检验是一种常用的假设检验方法,用于比较两组样本均值是否存在显著差异。在Python中,我们可以使用`scipy`库进行t检验,并得到p值。本文将介绍t检验的基本原理,并提供代码示例。
## 什么是t检验
t检验是由英国统计学家威廉·塞奇威克(William Sealy Gosset)于1908年提出的一种用于小样本情况下比较两组均值差异的方法。它基
原创
2023-07-21 00:53:04
570阅读
使用Python进行T检验所需要用到的第三方库有scipy。均可以通过pip直接安装。pip install scipy numpy引入第三方库from scipy import stats
from scipy import stats注:ttest_1samp、ttest_ind和ttest_rel均进行双侧检验。\(H_0:\mu=\mu_0\)\(H_1:\mu=\mu_0\)单样本T检验
转载
2023-06-30 11:26:13
271阅读
M是一个斜率,或者我们可以说是梯度。B是y轴上的值截距。Y是X的函数。回归模型是线性近似。为了获得良好的预测,我们需要找到B和M。例子:假设我们具有“能量”和“公里数”的适应性数据。我们需要找到乙和中号。查找这些值得公式如下:M =样本数*(XY总和-X总和* Y总和)/样本数*(X平方总和-X总和的平方)B = Y总和-M * X总和/样本数该图显示了这些值。计算出该值之后,M变为1.89,B的
1、零假设
首先假定零假设成立,然后求出某统计量达到如此极端的概率是多少
定义零假设,如果得到的值大于表上的值,则出现零假设的概率很小,则拒绝零假设
2、假设检验 2.1、T检验 总体标准差σ未知的正态分布。
单总体检验和
双总体检验。
(1)单总体检验
当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差
转载
2024-01-05 15:58:15
233阅读
1. T检验T检验是假设检验的一种,又叫student t检验(Student’s t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。 T检验用于检验两个总体的均值差异是否显著。 计算公式: t统计量: 自由度:v=n - 1 适用条件: (1) 已知一个总体均数; (2) 可得到一个样本均数及该样本标准误; (3) 样本
# 用Python实现已知T值求P值的t检验
在统计学中,t检验是一种典型的检验方法,用于通过样本数据估计总体参数。给定已知的T值,我们可以通过p值判断检验的显著性。本文将详细介绍使用Python进行这一过程的步骤,以及相应的代码实现。
## 一、流程概述
下面的表格展示了实现“已知T求P值”过程的主要步骤:
| 步骤 | 说明
假设检验原理反证法小概率事件在一次试验中是几乎不可能发生的(但在多次重复试验中是必然发生的)假设检验的步骤设置原假设与备择假设;设置显著性水平(通常选择);根据问题选择假设检验方式;计算统计量,并通过统计量获取P值根据P值和显著性水平值,决定接受原假设还是备择假设。原假设备择假设的设置:应当把如果真实成立但误判为不成立后会造成严重后果的命题选为原假设;应当把分析人员想证明正确的命题作为备择假设;应
转载
2024-03-11 15:22:15
175阅读
# 使用 Python 进行 T 检验 IC 值计算的指南
在数据分析和金融分析领域,计算信息比率 (IC 值) 是一种很重要的技能。IC 值通常用于评估投资策略的有效性,而 T 检验则用来检测 IC 值是否在统计学上显著。本文将详细介绍如何使用 Python 执行 T 检验以计算 IC 值。
## 整体流程
在实现过程中,首先需要了解整个工作流程。下面的表格展示了 T 检验 IC 值计算的
原创
2024-08-19 04:00:10
169阅读
目录1.置信区间的计算1.1 总体方差已知1.2 总体方差未知2.计算 P-Value2.1 总体方差已知2.2 总体方差未知1.置信区间的计算根据总体分布(T分布或者Z分布)和规定的置信度计算总体均值在指定置信度下的置信区间,然后将实验值和置信区间比较,若在置信区间之外(小概率事件发生)则表示实验统计量和总体统计量存在显著差异1.1 总体方差已知总体方差已知时,根据总体均值和
转载
2023-10-31 14:30:58
617阅读
本篇主要是我自己对第9章假设检验复习。主要内容涉及假设检验的基本知识和两总体均值和比例的推断。假设检验的基本概念① 将研究中的假设作为备择假设,将被挑战的假说作为原假设例:制造一批新型燃油喷射系统,新型燃油喷射系统的平均效率超过了24英里/加仑,令燃油效率的总体均值为μ,则备注假设(研究中的假设)就是μ > 24,原假设为μ ≤ 24。也就是我们不怎么希望看的得证的为原假设。② 假设
转载
2024-01-13 06:41:05
115阅读
假设检验 通常设定两个假设:零假设和备择假设,然后通过拒绝零假设,来接受备择假设,从而完成检验。p值 p值中p表示概率,指的是零假设若成立,得到测里样本情况的概率。基本上是探测到零假设极端情况的概率。单侧检验 p值在数据集的一侧,由备择假设决定具体在哪一侧。双侧检验 p值在数据的两侧的检验。z统计量与t统计量 当样本容里很小时,样本均值抽样分布不应该采用正态分布,而应采用t分布。z统计里服从正态分
转载
2024-01-02 13:03:57
161阅读
t检验适用范围、实际案例以及R语言的实现。因文章内容过长,所以分为上下两篇t检验(t test)亦称 t检验,以t分布为基础,是定量资料分析中最常用的假设检验方法。( 显著性检验的一种,以此来判定数据的差异是由于误差导致的还是真的有差异) t检验的应用条件为:①在单样本t检验中,总体标准差 未知且样本含量较小(n < 30/50)时,要求样本来自
IBM SPSS Statistics的比较平均值分析法属于参数型的检验法,是以已知总体分布的前提下,检验样本数据与总体数据的差异,其中包含了平均值、单样本T检验、独立样本T检验、配对样本T检验以及单因素ANOVA检验的分析方法。其中,单样本T检验、独立样本T检验、配对样本T检验都是运用T分布理论来分析差异发生的概率,从而比较两个平均数的差异是否显著的分析方法。那么,这三种T检验的分析方法有什么不
转载
2024-01-31 01:54:22
176阅读
一、当给定了检验的显著性水平a=0.05时,如果检验时要检验是否相等,就是双侧检验,允许左右各有误差,即a/2=0.025。此时要查尾部面积是0.025时的Z值。但是我们参考书中说明表中间的数字是指从最左面一直到右侧某一点的面积,而Z值是指从中间均值所在的位置往右计算的长度。所以当Z=0时,中间的面积=0.50就是这个道理。现在我们要的是从右边尾部面积查Z值。当右边尾部面积是0.025时,左边的面
转载
2023-07-31 17:41:01
1088阅读
t检验主要是针对正态总体均值的假设检验,即检验样本的均值与某个值的差异,或者两个样本的均值是否有差异等。其不需要事先知道总体的方差,并且在少量样本情况下也可以进行检验。python进行t检验使用scipy包的stats模块。一、单样本t检验 示例:已知某工厂生产的一种点火器平均寿命大于1200次为合格产品,现在质检部随机抽取了20个点火器进行试验,结果寿命分别为(单位:次):
转载
2023-08-03 22:01:44
552阅读
根据研究设计和资料的性质有单个样本t检验、配对样本t检验、两个独立样本t检验以及在方差不齐时的t'检验单样本t检验单样本t检验(one-sample t-test)又称单样本均数t检验,适用于样本均数$\overline{X}$与已知总体均数$\mu_{0}$的比较,其比较目的是检验样本均数所代表的总体均数µ是否与已知总体均数$\mu_{0}$有差别已知总体均数$\mu_{0}$, 一般为标准值、
转载
2024-01-20 22:47:23
218阅读
# Python OLS回归的t值检验
## 前言
在进行回归分析时,我们经常需要对回归系数的显著性进行检验。一种常用的方法是利用t值检验来判断回归系数是否显著不为0。在Python中,我们可以使用OLS(Ordinary Least Squares)回归模型来进行t值检验。
本文将详细介绍Python中如何使用OLS回归模型进行t值检验,并附上代码示例,帮助读者更好地理解和应用这一方法。
原创
2024-07-08 05:20:22
357阅读