1、enumerate() 函数 enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。语法:enumerate(sequence, [start=0])参数:sequence – 一个序列、迭代器或其他支持迭代对象。start – 下标起始位置。返回值:返回 enumerate(枚举) 对象。>
转载
2023-11-19 14:51:12
389阅读
注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著。1、基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子集(称为一个簇cluster),每个簇潜在地对应于某一个概念。但是每个簇所具有现实意义由使用者自己决定,聚类算法仅仅会进行划分。 (2)聚类的作用: 1)可以作为一个单独的过程,用于寻找数据的一个分布规律 2)作为分类的预处
转载
2024-09-26 10:13:23
95阅读
1)EDMA概要EDMA数据传输有两种发起方式:ü CPU发起的EMDA数据传输(非同步方式):需要传输时,CPU设置ESR寄存器的相应位为1,从而触发一个EDMA事件的产生,事件对应的通道参数被送往地址硬件并且完成相应的处理,这种非同步方式的实时数据传输无需设定EER寄存器;ü &
转载
2024-04-11 15:21:35
261阅读
跨语言相互调用,一直是不同编程语言间代码交互Interop的难题,微软一直致力于给C++与C#找个理想的”翻译“,这么多年在语法语义(当然还应该包含编译器)和ABI(应用二进制接口)层面做了不少尝试,进而产生了C++\CLI,C++\CX和COM等技术产物,但这些产物如同现实中自然语言翻译一样,并不算太完美(java同其他语言交互的机制
转载
2023-10-30 14:53:27
182阅读
masscan使用linux安装git clone https://github.com/robertdavidgraham/masscan
make扫描选项masscan -iL target.txt -p 1-65535 -oJ result.json --rate 2000 -v-iL 从文件中获取扫描目标-p 指定参数-oJ 结果以json形式存入文件–rate 速率、每秒发送包的个数-
1.torch.nn.Parameter()函数self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size))含义是将一个固定不可训练的tensor转换成可以训练的类型parameter,并将这个parameter绑定到这个module里面(net.parameter()中就有这个绑定的 parameter,所以在参数优化的时候可以进行优化)
这是「EMA系列」文章之第二部分(Part 2),第一部分见
Desperate:「EMA系列之I」如何理解EMA指数移动平均值以及Python实现zhuanlan.zhihu.com
今天这篇文章在讨论两个EMA的进阶问题:如何确定EMA的warm-up时间? 如何更加合理地设置EMA的初始值?让我们从一个简单的例子开始。假设我们将观察到一个时间序列,每个观察值都是从标准
转载
2024-08-02 15:06:40
69阅读
总结使用递归和循环两种方法来完成 python环境下循环相比于递归更快,更适应极端样本情况递归def _ema(arr,i=None):
N = len(arr)
α = 2/(N+1) #平滑指数
i = N-1 if i is None else i
if i==0:
return arr[i]
else:
data =
转载
2023-06-15 18:56:12
195阅读
MNE-python读取.edf文件EDF,全称是 European Data Format,是一种标准文件格式,用于交换和存储医疗时间序列。该格式文件能够存储多通道的数据,允许每个信号拥有不同的采样频率。在内部,它包括标题和一个或多个数据记录。标题包含一些一般信息(患者标识,开始时间......等等)以及每个信号的技术规格(校准,采样率,过滤,......等等),编码为 ASCII 字符。数据记
转载
2023-11-13 21:58:49
70阅读
# 实现“ema python”的步骤和代码解释
## 1. 简介
在开始之前,让我们先了解一下“ema python”是什么。EMA(Exponential Moving Average)是一种常用的指标,用于平滑时间序列数据。在Python中,我们可以使用一些库来实现EMA的计算和绘制。
## 2. 实现步骤
下面是整个实现“ema python”过程的详细步骤:
| 步骤 | 描述 |
原创
2023-09-17 09:43:23
547阅读
EM算法作用EM算法是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计或极大后验估计。预备知识: 用Y表示观测随机变量的数据,Z表示隐随机变量的数据。Y和Z连在一起称为完全数据,观测数据Y又称为不完全数据。给定观测数据Y,其概率分布是P(Y|θ),其中θ是需要估计的模型参数,它相应的对数似然估计L(θ)=logP(Y|θ)。假设Y和Z的联合概率分布是P(Y,Z|θ),那么完全数据的对数似然
转载
2024-03-27 23:30:04
226阅读
如何实现Python EMA包
在教授这位刚入行的小白如何实现“Python EMA包”之前,让我们先了解一下整个流程。下面是一个简单的步骤表格,展示了实现这个功能的主要步骤:
步骤 | 描述
---|---
1. 确定需求 | 确定所需的EMA指标计算方法和参数
2. 导入EMA库 | 导入Python中的EMA库
3. 获取数据 | 获取需要计算EMA的数据
4. 计算EMA | 使用EM
原创
2024-02-02 11:21:24
132阅读
# 将 EMA 转为 Python 的完整指南
在金融数据分析中,指数移动平均(EMA)是一种常用的工具,用于平滑价格数据并揭示趋势。本篇文章将教你如何将 EMA 计算转为 Python 代码。通过以下流程,你将清晰了解每个步骤,并能顺利实现代码。
## 流程概述
| 步骤 | 描述 |
|------|-----------------
# EMA指标简介及Python实现
## 引言
指标是金融市场分析中的重要工具之一,主要用来帮助我们判断市场走势和做出买卖决策。指数移动平均(Exponential Moving Average,EMA)是一种常用的技术指标,通过对历史价格数据进行加权平均来计算出指标的值。本文将介绍EMA指标的原理以及如何用Python实现它。
## EMA指标原理
EMA指标是用来衡量价格的趋势的,它会根
原创
2023-12-07 07:11:40
285阅读
# Python中的EMA公式及其实现
在金融领域,技术分析是一个重要的工具,而指数移动平均(EMA)是常用的技术指标之一。 EMA相较于简单移动平均(SMA)更注重最新的数据,适合用于识别价格趋势。本文将详细介绍EMA公式,并通过Python实现该公式,同时提供流程图和类图以帮助理解。
## 1. 什么是EMA?
EMA(Exponential Moving Average)是一种加权的平
原创
2024-09-29 05:23:44
156阅读
实现指数移动平均(EMA)在金融数据分析中是一项非常常见且重要的计算。EMA 是一种加权平均,最近的数据点相对较旧的数据点具有更大的权重。这种方法在技术分析、价格趋势预测和其他统计分析中被广泛应用。接下来,我将描述关于如何使用 Python 实现 EMA 的过程,涵盖技术原理、架构解析、源码分析、案例分析等。
### 背景描述
在股票和其他金融市场的分析中,EMA 是一种重要的指标,它能够帮助
# Python实现EMA指标
## 简介
在金融领域,指数移动平均线(Exponential Moving Average,简称EMA)是一种常用的技术指标。它可以帮助我们分析价格的趋势,并作为买卖决策的依据。本文将介绍如何使用Python来实现EMA指标。
## EMA指标的计算公式
EMA指标的计算公式如下:
```
EMA(n) = α * Price + (1 - α) * E
原创
2023-11-23 12:21:28
371阅读
一、设置 OpenCV您已经读了这本书,因此您可能已经对 OpenCV 是什么有了个概念。 也许您听说过似乎来自科幻小说的功能,例如训练人工智能模型以识别通过相机看到的任何东西。 如果这是您的兴趣,您将不会感到失望! OpenCV 代表开源计算机视觉。 它是一个免费的计算机视觉库,可让您处理图像和视频以完成各种任务,从显示网络摄像头中的帧到教机器人识别现实中的物体。在本书中,您将学习利用 Pyth
股票中的SMA,EMA和WMA是常用的技术分析指标。这些指标基于历史股价计算得出,可以帮助投资者了解股票的趋势,为决策提供依据。虽然它们都是平均值算法,但它们之间还是有一些区别的。SMA 简单移动平均线(Simple Moving Average)SMA是移动平均线的简称,全称是简单移动平均线(Simple Moving Average)。它是历史股价平均值的简单算术平均数。计算SMA,只需要将一
转载
2024-04-03 10:57:45
478阅读
# Python中的指数移动平均(EMA)求解
## 引言
随着数据分析的深入,越来越多的人开始关注时间序列数据的处理。在金融分析、气象学、工程等领域,平滑技术被广泛应用于分析数据。而指数移动平均(Exponential Moving Average,EMA)是一种有效的数据平滑技术,其能够更好地反映时间序列中的趋势。本文将介绍如何在Python中计算EMA,并提供对应的代码示例和适当的可视化
原创
2024-09-18 06:21:43
63阅读