前言: OpenCV中有两个函数可以训练分类器opencv_haartraining.exe和opencv_traincascade.exe,前者只能训练haar特征,后者可以用HAAR、LBP和HOG特征训练分类器。这两个函数都可以在opencv的相应文件夹下找到,opencv_haartraining.exe训练的adaboost级
转载
2023-12-25 12:31:58
75阅读
图像分类是人工智能领域的一个热门话题,通俗来讲,就是根据各自在图像信息中反映的不同特征,把不同类别的目标区分开。图像分类利用计算机对图像进行定量分析,把图像或图像中的每个像元或区域划归为若干个类别中的某一种,代替人的视觉判读。在实际生活中,我们也会遇到图像分类的应用场景,例如我们常用的通过拍照花朵来识别花朵信息,通过人脸匹对人物信息等。通常,图像识别或分类工具都是在客户端进行数据采集,在服务端进行
转载
2023-08-17 16:32:42
80阅读
文章目录0 简介1 背景意义2 数据集3 数据探索4 数据增广(数据集补充)5 垃圾图像分类5.1 迁移学习5.1.1 什么是迁移学习?5.1.2 为什么要迁移学习?5.2 模型选择5.3 训练环境5.3.1 硬件配置5.3.2 软件配置5.4 训练过程5.5 模型分类效果(PC端)6 构建垃圾分类小程序6.1 小程序功能6.2 分类测试6.3 垃圾分类小提示6.4 答题模块7 关键代码8 最后
转载
2023-11-27 10:38:59
61阅读
C++ 是一种编译型(compiled)语言,设计重点是性能、效率和使用灵活性,偏向于系统编程、嵌入式、资源受限的软件和系统。Python是一种解释型(interpreted)语言,同样也支持不同的编程范式。Python 内置了常用数据结构(str, tuple, list, dict),简洁的语法、丰富的内置库(os,sys,urllib,...)和三方库(numpy, tf, torch ..
转载
2024-09-03 20:35:29
50阅读
感谢阅读常见任务图像分类通俗讲解常用数据集CIFAR-10和CIFAR-100ImageNetAlexNet该网络的特点是:GoogLeNetInception 块GoogLeNet模型总介绍实践目标检测目标检测位置信息的两种格式:常用的开源数据集常用的评价指标IOUmAPNMS(非极大值抑制)目标检测方法分类two-stage的算法One-stage的算法yolo优缺点yoloV7个人改写版的
在计算机中,按照颜色和灰度的多少可以将图像分为四种基本类型。二值图像灰度图像索引图像真彩色RGB图像1. 二值图像一幅二值图像的二维矩阵仅由0、1两个值构成,“0”代表黑色,“1”代白色。由于每一像素(矩阵中每一元素)取值仅有0、1两种可能,所以计算机中二值图像的数据类型通常为1个二进制位。二值图像通常用于文字、线条图的扫描识别(OCR)和掩膜图像的存储。2. 灰度图像灰度图像矩阵元素的取值范围通
AI,Artificial Intelligence,顾名思义,是人工通过高强度的计算能力,并基于大量的环境数据、行为数据、历史数据等大数据支持,或是一定规则的自学习机制,来分析特定输入的情况下,事物的相关性、影响和可能处理方法,从而使机器不只是进行简单的运算,而是能够在某种程度上进行类智能的思考和运作。 业界的大事发生时,总会撩动AI热潮。远的是96年和97年卡斯帕罗夫和深蓝的对弈,2011年I
转载
2024-01-15 06:13:33
11阅读
简介:分类是指利用数据的特性将其分成若干类型的过程。监督学习分类器就是用带标记的训练数据建立一个模型,然后对未知数据进行分类。 一、简单分类器首先,用numpy创建一些基本的数据,我们创建了8个点;查看代码X = np.array([[3, 1], [2, 5], [1, 8], [6, 4], [5, 2], [3, 5], [4, 7], [4, -1]])给这8个点的数据赋予默认的
转载
2023-06-20 13:32:46
545阅读
对于计算机视觉,我们已经创建了一个名为torchvision的包,该包含有支持加载类似Imagenet、CIFAR10,MNIST等公共数据集的数据加载模块torchvision.datasets和支持加载图像数据转换模块torch.utils.data.DataLoader. 对于本教程,我们使用公共数据集CIFAR10,它包含10个类别:airplane、automobile、bird、cat
转载
2023-08-09 19:23:46
87阅读
概述CV(Computer Vision)在现实世界的应用相对比较成功,如日常生活中的人脸识别,车牌识别,指纹比对,电子稳像,行人,车辆的跟踪,等等。那么在其他领域呢,比如大家常玩的手机游戏,CV又可以有哪些应用呢?游戏场景的图像和现实场景的图像还是有差别的,有些游戏的场景相对比较复杂,如特效干扰、游戏人物不似真人一样有规则,艺术字体也不像车牌一样字体固定,并且有统一底色等等;有些元素是相对比较简
1. Introduction本文基于前文说的朴素贝叶斯原理,参考圣地亚哥州立大学的实验编写了一个简单的朴素贝叶斯分类器,并利用测试数据进行了测试。项目地址:2. 分类器编写2.1数据说明采用“adult”数据集,输入文件是adult.data,测试文件是adult.test。数据中一行为一个条目,表示一个人数据集中的变量变量名意义age
年龄
type_employer
职业类型,个体,政府等等
转载
2024-07-08 10:14:17
28阅读
最近在看这本书,觉得里面虫子分类器也值得试试实现,因为这个方法已经包含了神经网络的核心思想。以下是实现的过程。按照《Python神经网络编程》(异步图书出版)第一章虫子分类器训练的过程,模仿书中第二章的3层神经网络的实现过程,来构建一个可运行的虫子分类器。首先,构造出来分类器的框架,包含训练和查询.In [ ]: class BugClassifier:
def __i
转载
2023-11-06 13:06:11
58阅读
函数分类: 1 不带参函数 2 带参函数 默认带参函数 关键字参数 可变参数 字典参数 3 递归函数 4 匿名函数 1-1 不带参数函数
表示该函数不需要传递参数
def func():
print("hello world!")2-1 默认带参函数
表示该函数自带赋值了的参数,如果不传,则使
转载
2023-05-26 15:14:42
157阅读
一 KNN概述K 近邻(K-Nearest Neighbor, KNN)是一种监督学习算法。KNN是通过测量不同特征值之间的距离进行分类。二 KNN原理它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几
转载
2024-04-15 12:04:42
18阅读
文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类器 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数
rgb = io.imread(f) # 读取图片
gray =
转载
2024-03-03 10:11:20
157阅读
#感知器逻辑:一个二值分类问题,分别记为1(正类别)和-1(负类别).定义激励函数z=wx (w为权值,x为输入值),当Z大于阈值时为1类,否则为-1类 #用Python实现感知器学习算法。步骤:1、将权重初始化为0或一个极小的随机数 2、迭代所有训练样本,计算出输出值Y,更新权重。 import numpy as np class Perceptron(object): #class 创建类 d
转载
2023-10-24 00:12:53
87阅读
你已经知道怎样定义神经网络,计算损失和更新网络权重。现在你可能会想,那么,数据呢?通常,当你需要解决有关图像、文本或音频数据的问题,你可以使用python标准库加载数据并转换为numpy array。然后将其转换为 torch.Tensor。对于图像,例如Pillow,OpenCV对于音频,例如scipy和librosa对于文本,原生Python或基于Cython的加载,或NLTK和SpaCy针对
转载
2023-07-06 13:45:42
62阅读
目录内容:情景带入:使用Python实现线性分类器内容:1. 建立机器学习算法的直觉性2. 使用Numpy, Pandas, Matplotlib读取数据,处理数据,可视化数据.3. 使用python实现一个线性分类器 情景带入:我们将输入的信号与对应的权值进行乘法运算,得到的结果进行加法运算,得到输出结果.通过对比输出结果与阈值的相对大小,对数据进行分类.这就是经典的二分类问题.我们用
转载
2023-08-14 22:43:12
119阅读
这篇是我暂时学的教程里的所有东西了,我也都加上了我的理解。但SVM是门学问,还要继续学的更深一点
SVM分类器里面的东西好多呀,碾压前两个。怪不得称之为深度学习出现之前表现最好的算法。 今天学到的也应该只是冰山一角,懂了SVM的一些原理。还得继续深入学习理解呢。 一些关键词:&nb
转载
2023-11-28 21:16:52
7阅读
题目: 线性分类器(line) 【题目描述】 考虑一个简单的二分类问题——将二维平面上的点分为A和B两类。 训练数据包含n个点,其中第i个点(1≤i≤n)可以表示为一个三元组(x,y,type),即该点的横坐标、纵坐标和类别。 在二维平面上,任意一条直线可以表示为 θ₀+θ₁x+θ₂y=0的形式,即由θ₀,θ₁,θ₂三个参数确定该直线,且满足θ₀,θ₁不同时为0。 基于这n个已知类别的
转载
2023-12-18 22:08:12
25阅读