文章目录一、数据区域读取填充数字1、填充ID2.排序二、数据筛选、过滤三.数据可视化——柱状图1、对这张图表进行柱状图操作(X轴为Name,Y轴为Age)2、单用matlab库把上面的内容再做一遍3、分组柱图深度优化a、对该表格进行分组柱图b.两组数据(2016,2017)c.排序d.对图表添加标题e.对图表的x轴和y轴进行名称表示f.对x轴的文字的角度进行旋转4.叠加水平柱状图a.原始数据b.
转载 2023-05-29 16:54:16
169阅读
一、xlrt读取excel中的数据现有文件存放地址如下:需要读取的文件中“redpacket”这个表格的内容:1、现编写代码如下,目标读取表格中“redpacket_gc”这一值 import xlrd fp='C:/GIT-CUISY/python/info.xlsx' #文件存放的地址 workbook=xlrd.open_workbook(fp) #创建一个工作薄 sheet=workb
     我们平时在做自动化测试的时候,可能会涉及到从表格中去读取或者存储数据,我们除了可以使用openpyxl来操作excel,当然也可以利用pandas来完成,这篇随笔只是我在学习过程中的简单记录,其他的功能还需要继续去探索。一、pandas的安装:  1.安装pandas其实是非常简单的,pandas依赖处理Excel的xlrd模块,所以我们需要提前安装这个,安
大家在工作和生活中经常会遇到处理EXCEL表格的时候,例如将一个EXCEL表格中的内容处理之后复制到另外一个EXCEL表格之中,或者大批量处理EXCEL,无论是哪种情况,如果我们不借助工具,自己一条条去处理的话,估计要耗费不少的时间和经历。今天小编就教大家如何用python处理EXCEL,希望能帮助大家提高效率。今天处理EXCEL需要用到python的第三方库:openpyxl。pip insta
在这篇文章中我们介绍了三种不同的python库对表格数据进行处理,分别是xlrd、pandas和vaex,其中特别着重的强调了一下vaex的优越性能以及在大数据中的应用价值。配合一些简单的示例,我们可以初步的了解到这些库各自的特点,在实际场景中可以斟酌使用。
原创 2022-05-05 14:12:22
782阅读
正式开讲之前,我们需要先了解几个基本的知识点:1、Python字典(Dictionary) 的setdefault()方法描述:如果键不存在于字典中,将会添加键并将值设为默认值。语法:dict.setdefault(key, default=None)参数: key -- 查找的键值。 defaul ...
转载 2021-10-21 18:12:00
844阅读
2评论
数据不太多的时候,用xlsx表格导出导入还是可以的。数据量很大时(5万条以上),用 PHPExcel 导出 xls 将十分缓慢且占用很大内存,最终造成运行超时或内存不足。excel也是有脾气的呀!表数据限制:Excel 2003及以下的版本。一张表最大支持65536行数据,256列。Excel 2007-2010版本。一张表最大支持1048576行,16384列。也就是说你想几百万条轻轻松松一次
原创 2022-06-13 17:03:05
403阅读
列表处理技术1、列表基础2、列表切片3、列表的增加、删除、修改4、实例应用(汇总每个人的总成绩)5、列表操作符6、列表推导式列表推导式的转换列表嵌套推导式条件列表推导7、实例应用(筛选各工作表中符合条件的值)8、列表转换list 方法reverse 方法copy 方法zip 方法9、实例应用(统计出大于等于2万的记录到新表)10、列表常见统计方式1实例应用:如下表所示,我们统计一下每个人工资的各
Python数据科学家十分喜爱的编程语言,其内置了很多由C语言编写的库,操作起来更加方便,Python在网络爬虫的传统应用领域,在大数据的抓取方面具有先天优势,目前,最流行的爬虫框架Scrapy、HTTP工具包urlib2、HTML解析工具、XML解析器lxml等,都是能够独当一面的Python类库。Python十分适合数据抓取工作,对于大数据处理Python在大数据处理方面的优势有:1、异
概述Excel固然功能强大,也有许多函数实现数据处理功能,但是Excel仍需大量人工操作,虽然能嵌入VB脚本宏,但也容易染上宏病毒。python作为解释性语言,在数据处理方面拥有强大的函数库以及第三方库,excel作为主要基础数据源之一,在利用数据进行分析前往往需要预先对数据进行整理。因此,本文就python处理excel数据进行了学习,主要分为python对excel数据处理的常用数据类型以及常
转载 2023-08-09 10:53:15
327阅读
一、基本函数篇1)python strip()函数介绍函数原型声明:s为字符串,rm为要删除的字符序列s.strip(rm) 删除s字符串中开头、结尾处,位于 rm删除序列的字符 s.lstrip(rm) 删除s字符串中开头处,位于 rm删除序列的字符 s.rstrip(rm) 删除s字符串中结尾处,位于 rm删除序列的字符注意: 当rm为空时,默认删除空白符(包括'\n', '\r',
转载 2023-08-14 14:04:31
219阅读
本文仅供交流学习,部分代码根据练习题需求未采用函数进行直接转换。有错误或更好的方法欢迎提出。1.三个数排序输入三个整数x,y,z,将这三个数由小到大排序输出。输入:1 4 3输出:1 3 4a,b,c=input().split() n=[] n.append(int(a)) n.append(int(b)) n.append(int(c)) n.sort() print(n[0],n[1],n[
转载 2023-10-14 14:32:09
340阅读
题记:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。无论,数据分析,数据挖掘,还是算法工程师,工作中80%的时间都用来处理数据,给数据打标签了。而工作中拿到的数据脏的厉害,必须经过处理才能放入模型中。以下是一脏数据表:(表格放在最后供看官下载练习)这张表格有多少处数据问题?大家对数据问题是如何定义的?不妨带着疑问阅读下文;数据处理四性“完全合一”。完整性:单条数据是否存在空值,
目前Python可以说是非常流行,在目前的编程语言中,Python的抽象程度是最高的,是最接近自然语言的,很容易上手。你可以用它来完成很多任务,比如数据科学、机器学习、Web开发、脚本编写、自动化等。▍1、for循环中的else条件这是一个for-else方法,循环遍历列表时使用else语句。下面举个例子,比如我们想检查一个列表中是否包含奇数。那么可以通过for循环,遍历查找。 numbers&
Python 字符串切割处理,file()方法读取、写入文件 近期碰到一个问题,两套系统之间数据同步出了差错,事后才发现的,又不能将业务流程倒退,但是这么多数据手工处理量也太大了,于是决定用Python偷个小懒。1、首先分析数据。两边数据库字段的值都是一样,先将这边数据库的数据查询导出,正好是2列120多行的数据。那么目标就是拼接成update from
转载 2020-04-04 14:37:00
272阅读
6.数据处理实例6.1.数据如图:       6.2.需求:     6.3.处理数据:    我个人拿到数据,直接想着转换成DataFrame,然后着手算总分,然后直接数据分组,还是太年轻了...self.df["total"] = self.df.英语 + self.df.体育 + self.df.军训
Pandas使用一个二维的数据结构DataFrame来表示表格式的数据,相比较于Numpy,Pandas可以存储混合的数据结构,同时使用NaN来表示缺失的数据,而不用像Numpy一样要手工处理缺失的数据,并且Pandas使用轴标签来表示行和列。1、文件读取首先将用到的pandas和numpy加载进来import pandas as pdimport numpy as np读取数据:#csv和xls
preface:最近在整内比赛MDD。遇到一些数据处理方面的事情,用python pandas是最为方便的,远比我想象的强大。几行代码就完成了数据处理,多个文件的融合,再用sklearn里面的模型跑一跑,就能得到结果。为此,经常记录下来,对数据处理的应用。一、Pandas合集df = pd.read_csv('%s/%s' % (input_path, file_name)):read_csv(
转载 2023-12-02 21:13:37
87阅读
首先了解使用python进行数据处理常用的两个包:numpy和pandas。numpy最重要的特点就是n维数组对象ndarray是一个快速而灵活的大数据集容器,它是一个通用的同构数据多维容器,即所有的元素必须是相同的类型,每个数组有一个shape(表示维度大小的元组),一个dtype(说明数组数据类型的对象)。1.创建数组常使用的函数有:array,arange 例如: array函数: aran
文章目录1. pandas简介2. pandas 用法2.1 pandas的数据格式2.2 数据的导入和自生成数据pandas的行列数据的获取pandas 条件筛选数据pandas数据数据处理pandas 缺失值,重复(异常值)等的处理缺失值的处理补充(数据相关性的计算)以及显著性检验 1. pandas简介pandas是一个是一个python包,可以很大程度上加快我们对数据处理。花费时间把
  • 1
  • 2
  • 3
  • 4
  • 5