之前用featureCount 处理得到结果,要提出第一列gene_id 和 readcount 列,首先软件输出的第一行默认是你使用的命令行,没有用,用bash批量删掉。for i in `ls`;do sed -i '1d' $i;done删除当前文件夹下所有文件第一行。其实提出两列很简单,不过我受够了每次一个文件执行一次的烦。想搞成别的程序调用时命令行参数直接就行。第一次知道sys.argv
转载
2023-07-02 10:14:03
121阅读
numpy模块内置的函数能够对数组进行复杂而高效的操作,这些函数中都有一个参数axis(轴)。在数组中,轴表示维度,对于二维数组,axis参数的取值通常有:当axis为None,表示把数组展开为一维数组;当axis为0时,表示按照列(第一维)进行计算;当axis=1时,表示按照行(第二维)进行计算。一,排序sortsort(axis,kind)函数用于对数组进行排序,可以使用类方法numpy.so
PyCharm的Column Selection Mode提供了列选择功能。 使用:在当前文件右键-》Column Selection Mode-》用鼠标垂直选择文本快捷键:Alt + Shift + Insert效果如下图:
转载
2023-07-05 12:19:04
532阅读
import codecs
f = codecs.open('test1 - 副本.txt', mode='r', encoding='utf-8') # 打开txt文件,以‘utf-8’编码读取
line = f.readline() # 以行的形式进行读取文件
list1 = []
while line:
a = line.split()
b = a[0:1] # 这
转载
2023-06-26 23:15:56
176阅读
## 实现“Python numpy打印列”的步骤
在这篇文章中,我将教给你如何使用Python的NumPy库来打印列。NumPy是一个功能强大的Python库,用于科学计算。它提供了一个多维数组对象和一些用于操作数组的函数。
### 步骤概述
以下是实现“Python numpy打印列”的步骤概述:
| 步骤 | 描述 |
| --- | --- |
| 步骤 1 | 导入NumPy库
原创
2023-11-28 13:52:56
111阅读
# 使用Python的NumPy库进行数组列数操作
NumPy是Python中一个强大的数值计算库,广泛应用于科学计算和数据分析。如果你正在处理数据,很可能需要处理多维数组。在NumPy中,数组的列数是一个非常重要的属性,本文将介绍如何使用NumPy获得数组的列数,并通过代码示例与状态图、甘特图帮助你更好地理解这一概念。
## NumPy简单介绍
NumPy的核心是ndarray对象,它是一
原创
2024-09-18 04:08:47
50阅读
# 使用Python NumPy 跳着取列的完整指南
在数据处理和科学计算中,NumPy是Python中一个非常重要的库。它提供了许多用于数组和矩阵操作的功能。在某些情况下,我们可能需要从一个数组中跳过特定的列,直接选择我们感兴趣的列。本文将会向你展示如何使用NumPy实现“跳着取列”的功能。
## 文章结构
我们将按照以下的步骤进行讲解:
| 步骤 | 描述 |
|------|----
原创
2024-09-03 07:09:06
105阅读
# Python中使用Numpy对某列进行求和
## 介绍
Numpy是Python中一个强大的数值计算库,它提供了丰富的功能和高效的数组操作。在数据分析和科学计算中,经常需要对数据进行统计分析,比如对某列数据进行求和。本文将介绍如何使用Numpy对某列进行求和,并给出代码示例。
## 准备工作
在开始之前,需要先安装Numpy库。可以使用以下命令在终端或命令提示符中安装Numpy:
```
原创
2023-12-16 09:03:22
150阅读
# 教你如何实现“python numpy 按列读取”
## 一、概述
在python中使用numpy库实现按列读取数据是非常常见的需求。本文将教你如何使用numpy库来按列读取数据。
## 二、流程
下面是按列读取数据的流程:
```mermaid
gantt
title 实现“python numpy 按列读取”流程图
section 流程
准备数据集
原创
2024-05-09 05:58:59
86阅读
# 学习使用 NumPy 生成列向量
在数据科学和机器学习中,列向量是一种常见的数据表示形式。本文将会指导你如何使用 Python 的 NumPy 库生成列向量,并帮助你理解整个流程。通过使用表格、Gantt 图和饼状图,会更清晰的展示整个练习的步骤和时间分配。
## 流程概述
下面是生成列向量的主要流程:
| 步骤 | 描述 | 所需时间 |
|------|------|-------
numpy简介Python中用列表(list)可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针。这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象。对于数值运算来说这种结构显然比较浪费内存和CPU计算时间。此外python还提供了一个array模块,array对象和列表不同,它直接保存数值,和C语言的一维数组比较类似。但是由于它不支持多维,也没
# 使用NumPy创建列向量的指南
NumPy是Python中进行科学计算的一个强大库,其提供了高效的多维数组操作。列向量是矩阵的一种形式,通常用于线性代数和机器学习等领域。在本篇文章中,我们将介绍如何使用NumPy创建列向量,并通过代码示例来加深理解。
## 什么是列向量?
在数学中,列向量表示为一个n × 1的矩阵,意味着其只有一列,包含n个元素。例如,一个包含三个元素的列向量如下所示:
原创
2024-10-13 04:40:01
142阅读
# 如何在Python中使用Numpy删除矩阵列
## 介绍
在Python中,Numpy是一个常用的数学库,可以帮助我们进行数组和矩阵运算。有时候我们需要删除矩阵中的某一列,这个过程并不难,但对于刚入行的小白来说可能会比较困惑。在本文中,我将向你展示如何使用Python中的Numpy库来删除矩阵的列。
## 流程图
```mermaid
flowchart TD;
A[导入Numpy
原创
2024-07-13 05:59:11
45阅读
在数据处理中,尤其是在使用 Python 的 NumPy 库时,经常需要对数组进行各种操作,其中删除特定列是一个常见的需求。本文将详细介绍如何在 NumPy 数组中删除列,内容涵盖从技术的背景到实用的编码示例,全面分析这一问题的不同方面。
## 背景定位
随着数据科学和机器学习的迅猛发展,Python 成为数据处理领域中的主要语言之一。尤其是 NumPy 库,自 2006 年其第一版发布以来,
系列文章目录numpy的安装与基础入门[向量、矩阵与维度] numpy的安装与基础入门[向量、矩阵与维度]系列文章目录前言numpy安装向量与矩阵生成向量生成矩阵向量类型 前言numpy是科学计算以及机器学习深度学习的基础必备工具,本文将介绍numpy的安装,以及关于向量、矩阵相关的基础知识。numpy安装在conda下使用conda install numpy安装。 如果没有conda可以使用p
转载
2023-10-02 20:03:31
408阅读
numpy基础(1)以下教程涉及到的文字均来自于莫烦Python。有一个坑需要避免下:二维数组需要多加一个括号,要不会报错。numpy属性
ndim:维度
shape:行数和列数
size:元素个数使用numpy首先要导入模块import numpy as np #为了方便使用numpy 采用np简写import numpy as np
if __name__ == '__main__':
转载
2024-05-20 23:14:59
170阅读
前言Numpy是一个python用来处理数学问题的包,全程是Numerical Python。 其最重要的一点就是,提供了n维数组,弥补了list的不足。 而且Numpy还有一个优势,就是快。它可以利用矩阵的计算优化,比用for循环计算要快很多。数据类型在深度学习中,常见的就是数据有零维数据,也就是一个数,俗称标量一维数据,也就是一列数,俗称向量。一般用于描述特征。二维数据,一个矩阵,比如一张图片
转载
2023-10-31 23:15:33
144阅读
Python随机数生成(二):numpy库中random函数numpy库中的random函数生成随机数(1)生成随机整数① np.random.randint(low, high=None, size=None, dtype=int)② random_integers(low, high=None, size=None)(2)生成随机浮点数① np.random.rand(d0, d1, ...
转载
2023-09-04 15:29:12
36阅读
Pandas 的列/行操作一、列操作1.1 选择列1.2 增加列1.3 删除列(del 和 pop 函数)二、行操作2.1 选择行2.1.1 通过 label 选择行(loc 函数)2.1.2 通过序号选择行(iloc 函数)2.1.3 通过序号选择行切片2.2 增加行(append 函数)2.3 删除行(drop 函数) 一、列操作1.1 选择列d = {'one' : pd.Series([
转载
2023-06-11 14:15:04
202阅读
数据分析过程中,经常会使用Python之对DataFrame的多列数据运用apply函数操作,通过上述操作可以快速综合多列数据得到相应结果。如果得到的结果只有一个数,则可以直接赋值到DataFrame中的新字段,但是我在分析过程中往往会遇到,函数结果为元组(例如得到两个字段),此时需要将结果分别赋值到DataFrame中的两个新字段,否则需要两次运用apply函数赋值两次。经过搜索,可以通过下述方
转载
2023-06-10 00:20:19
243阅读