算法原理K-means算法是最常用的一种算法。算法的输入为一个样本集(或者称为点集),通过该算法可以将样本进行,具有相似特征的样本为一。针对每个点,计算这个点距离所有中心点最近的那个中心点,然后将这个点归为这个中心点代表的簇。一次迭代结束之后,针对每个簇,重新计算中心点,然后针对每个点,重新寻找距离自己最近的中心点。如此循环,直到前后两次迭代的簇没有变化。假设第一个图作为我们的原始
1.linear evaluation 是把模型骨干冻住,去训练最后的那个全连接层 2.端到端的学习其实就是不做其他额外处理,从原始数据输入到任务结果输出,整个训练和预测过程,都是在模型里完成的。 其实业界对于端到端的定义比较模糊,以下几种都可以自称为端到端: ①输入的是原始数据(不需要对原始数据进行预处理),就叫端到端; ②输入的是原始数据,输出为最终需要的结果,就叫端到端; ③进行的是全局优化
一、模型介绍权法是一种通过对已知数据的处理,从而获得影响因子权重的方法,其基本思路是根据指标变异性的大小来确定客观权重。权法的优点在于其根据各项指标指标值的变异程度来确定指标权数的,是一种客观赋权法,避免了人为因素带来的偏差。相对那些主观赋值法,精度较高客观性更强,能够更好的解释所得到的结果。权法的缺点在于忽略了指标本身重要程度,有时确定的权重会与预期的结果相差甚远,同时值法不能减少评价指
转载 2023-08-10 11:38:58
185阅读
算法是一种基于信息理论的算法,旨在通过测量数据的不确定性和复杂性来进行数据分组。这种算法在处理大规模数据时表现出色,尤其在图像处理、文本挖掘和生物信息学等领域有广泛应用。本文将详细探讨算法在Python中的实现过程,并通过实例对其进行深入分析。 ### 背景描述 自20世纪90年代以来,随着数据量的激增,数据挖掘和机器学习 techniques 逐渐受到关注。算法作为一种
原创 7月前
83阅读
准备说明:Python代码运行,需要有数据集,文章最后有csv格式的数据集,请自行下载。理论知识讲解:模糊理论模糊控制是自动化控制领域的一项经典方法。其原理则是模糊数学、模糊逻辑。1965,L. A. Zadeh发表模糊集合“Fuzzy Sets”的论文, 首次引入隶属度函数的概念,打破了经典数学“非0即 1”的局限性,用[0,1]之间的实数来描述中间状态。很多经典的集合(即:论域U内的某个元素是
转载 2024-08-13 17:42:44
39阅读
一、python代码''' Author: Vici__ date: 2020/5/14 ''' import math ''' Point,记录坐标x,y和点的名字id ''' class Point: ''' 初始化函数 ''' def __init__(self, x, y, name): self.x = x # 横坐标
转载 2023-08-20 10:00:57
60阅读
k-means 接下来是进入算法的的学习,算法属于无监督学习,与分类算法这种有监督学习不同的是,算法事先并不需要知道数据的类别标签,而只是根据数据特征去学习,找到相似数据的特征,然后把已知的数据集划分成几个不同的类别。比如说我们有一堆树叶,对于分类问题来说,我们已经知道了过去的每一片树叶的类别。比如这个是枫树叶,那个是橡树叶,经过学习之后拿来一片新的叶子,你看了一眼,然后说这是枫树
转载 2023-08-20 23:25:47
175阅读
目录一、聚类分析1、2、Scipy中的算法(K-Means)3、示例 完整代码:运行结果:函数使用:二、图像色彩操作步骤:完整代码:运行结果:三、合并至Flask软件部分代码:运行结果:一、聚类分析1、类聚是把相似数据并成一组(group)的方法。不需要类别标注,直接从数据中学习模式。2、Scipy中的算法(K-Means)  随机选取K个数据点作为“种
转载 2023-08-09 07:28:55
352阅读
一、python代码''' Author: Vici__ date: 2020/5/13 ''' import math ''' Point,记录坐标x,y和点的名字id ''' class Point: ''' 初始化函数 ''' def __init__(self, x, y, name, id): self.x = x # 横坐标
转载 2023-07-18 13:43:45
90阅读
运用python进行层次学习scipy库 很重要呀 需要引入的import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import scipy.cluster.hierarchy as sch #用于进行层次,画层次图的工具包 import scipy.spatial.distance as
转载 2023-08-08 14:37:11
229阅读
本文简要介绍了多种无监督学习算法的 Python 实现,包括 K 均值、层次、t-SNE 、DBSCAN 。无监督学习是一用于在数据中寻找模式的机器学习技术。无监督学习算法使用的输入数据都是没有标注过的,这意味着数据只给出了输入变量(自变量 X)而没有给出相应的输出变量(因变量)。在无监督学习中,算法本身将发掘数据中有趣的结构。人工智能研究的领军人物 Yan Lecun,解释道:
转载 2023-08-23 16:16:50
124阅读
菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程。关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题。一   、关于初始中心的选取 初始中心的选择一般有:(1)随机选取(2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推。(3)使用层次等算法更新出初
  题记:最近有幸参与了一个机器学习的项目,我的主要工作是帮助进行数据预处理,期间用Python实现了K-means算法,感觉收获很多特此记录下来和大伙儿分享。 一 机器学习项目的主要流程   机器学习项目的主要流程有五步:  1.数据提取  2.数据清洗  3.特征工程  4.训练模型  5.验证模型并优化  之前讲到的PYTHON爬虫可以算是第一步数据提取里面的内容,
[如何正确使用「K均值」?1、k均值模型 给定样本,每个样本都是m为特征向量,模型目标是将n个样本分到k个不停的或簇中,每个样本到其所属的中心的距离最小,每个样本只能属于一个。用C表示划分,他是一个多对一的函数,k均值就是一个从样本到的函数。 2、k均值策略 k均值的策略是通过损失函数最小化选取最优的划分或函数。 首先,计算样本之间的距离,这里选欧氏距离平方。 然后定义
转载 2024-05-29 07:07:07
35阅读
文章目录介绍KMeans()函数介绍实例导入相关包整理数据手肘法确定分类个数创建模型绘制结果分为3的结果 作者:张双双 介绍sklearn.cluster模块提供了常用的非监督算法。 该模块中每一个算法都有两个变体: 一个是(class)另一个是函数(function)。 实现了fit方法来从训练数据中学习;对来说,训练过程得到的标签数据可以在属性 labels_ 中找到。
在进行机器学习时,我们往往要对数据进行聚类分析,,说白了就是把相似的样品点/数据点进行归类,相似度高的样品点会放在一起,这样一个样本就会被分成几类。而聚类分析也有很多种方法,比如分解法、加入法、有序样品的、模糊法以及系统法等。而本文要介绍的就是系统法,以及如何用python来进行系统聚类分析。首先来看一下系统法的定义。系统法(hierarchical clusterin
数据分析1480今天给大家分享一篇关于的文章,10种介绍和Python代码或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多算法可供选择,对于所有情况,没有单一的最佳算法。相反,最好探索一系列算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级算法。完成本教程后,你将知道:
一、K-means算法分析31省市消费水平 代码:import numpy as np from sklearn.cluster import KMeans def loadData(filePath): fr = open(filePath,'r+') # r+:以读写的方式打开一个文本文件 lines = fr.readlines() #以readlines方式打开整个
转载 2023-11-02 17:01:48
50阅读
 kmeans相信大家都已经很熟悉了。在Python里我们用kmeans通常调用Sklearn包(当然自己写也很简单)。那么在Spark里能不能也直接使用sklean包呢?目前来说直接使用有点困难,不过我看到spark-packages里已经有了,但还没有发布。不过没关系,PySpark里有ml包,除了ml包,还可以使用MLlib,这个在后期会写,也很方便。  1 fro
算法优缺点:优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据算法思想k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。1.首先我们需要选择一个k值,也就是我们希望把数据分成多少,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据的结果和k的
  • 1
  • 2
  • 3
  • 4
  • 5