前言:这篇文章完全是为新手准备的。我们会通过用Python从头实现一个神经网络来理解神经网络的原理。 文章目录神经元1、一个简单的例子2、编码一个神经元把神经元组装成网络1、例子:前馈2、编码神经网络:前馈训练神经网络 第一部分1、损失2、损失计算例子3、代码:MSE损失训练神经网络 第二部分1、例子:计算偏导数2、训练:随机梯度下降代码:一个完整的神经网络 神经元首先让我们看看神经网络的基本单位
转载
2023-08-04 09:52:25
54阅读
深度神经网络是如何训练的?Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程-Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。后来看了LiFeiFei的Sta
转载
2024-01-16 22:13:43
80阅读
神经网络模型的训练过程其实质上就是神经网络参数的设置过程在神经网络优化算法中最常用的方法是反向传播算法,下图是反向传播算法流程图:从上图可知,反向传播算法实现了一个迭代的过程,在每次迭代的开始,先需要选取一小部分训练数据,这一小部分数据叫做一个batch。然后这一个batch会通过前向传播算法得到神经网络的预测结果。计算出当前神经网络的预测答案与正确答案之间的差距(有监督学习,在训练时有一个标注好
转载
2023-07-05 22:14:52
233阅读
本文涉及到的是中国大学慕课《人工智能实践:Tensorflow笔记》第四讲第六节的内容,通过tensorflow实现神经网络参数的acc/loss可视化,从而查看网络的训练效果。准确率acc与损失值loss的保存在下面所示的代码中,model.fit执行网络的训练时,已经同步记录了acc和loss的信息,保存在history中。# 第五步,执行训练
history=model.fit( 训练集数据
转载
2023-10-27 17:00:52
94阅读
有一个训练了12个小时的神经网络,各方面看起来都不错:梯度缓慢下降、损失也在逐渐降低,但是预测结果却不好:输出全是0值(全都预测为背景),没有检测出任何标签。“到底是什么地方出错了?”——叫天天不应叫地地不灵╮(╯▽╰)╭ 对于上述情况,或者另一种垃圾输出的情况——预测值只是所有标签的平均值,再或者更差的情况,模型准确率非常低…我们应该从什么地方开始检查模型呢?如何使用这个指南网络训练效
转载
2024-03-08 21:33:29
31阅读
完整的 PyTorch 模型训练的过程:1、数据预处理:首先,需要加载和准备数据。这可以通过使用 torchvision 和 torch.utils.data 中的数据加载器来完成。同时要进行数据预处理,例如缩放、裁剪、旋转、填充等。2、构建模型:接下来,需要定义神经网络模型。PyTorch 提供了一个 nn 模块来快速构建神经网络。该模块包括各种层(例如全连接层、卷积层、池化层等),可以使用它们
转载
2023-08-21 11:37:58
272阅读
作者: Alberto Quesada 译者: KK4SBB 责编:何永灿, 神经网络模型的每一类学习过程通常被归纳为一种训练算法。训练的算法有很多,它们的特点和性能各不相同。
问题的抽象 人们把神经网络的学习过程转化为求损失函数f的最小值问题。一般来说,损失函数包括误差项和正则项两部分。误差项衡量神经网络模型在训练数据集上的拟合程度,而正
转载
2024-03-06 05:30:40
83阅读
以前一直知道神经网络划分数据集时要分为训练集,测试集和验证集,但不知道并且一般以6:2:2的比例划分,到头来不知道这三者各是啥,以及他们的作用是什么。本片文档解释一下三者的作用。重点在于验证集和测试集的区别以及用处。1. 三者的功能简述在机器学习中,我们的模型一般包括以下几点:(1)模型设计;(2)模型架构(模型多少层,每层神经元个数);(3)神经元内置参数;(4)模型训练的参数:超参数(模型外置
转载
2023-08-11 17:49:46
193阅读
神经网络纯小白入门学习笔记一、概述二、神经网络的例子三、激活函数3.1 sigmoid函数3.2 阶跃函数的实现3.3 阶跃函数的图形3.4 sigmoid函数的实现3.5 sigmoid函数和阶跃函数的比较3.6 ReLU函数四、多维数组的运算4.1 多维数组的概述五、神经网络的设计5.1 神经网络的内积5.2 三层神经网络的实现5.2.1 符号确认5.2.2 各层神经元之间的实现5.2.3
转载
2023-08-30 16:36:49
157阅读
神经网络的学习学习:从训练数据中自动获取最优权重参数的过程指标:损失函数目的:以损失函数为基准,找到能使损失函数的值达到最小的权重参数机器学习的方案
从图像中提取特征量(可以从输入数据中准确提取本质数据的转换器)用机器学习技术学习特征量的模式CV领域常用的特征量包括SIFT,SURF和HOG深度学习有时也成为端到端机器学习(end-to-end machine learning),从原始数据中获得
转载
2023-12-07 19:29:51
85阅读
简单来说,预训练模型(pre-trained model)是前人为了解决类似问题所创造出来的模型。你在解决问题的时候,不用从零开始训练一个新模型,可以从在类似问题中训练过的模型入手。比如说,如果你想做一辆自动驾驶汽车,可以花数年时间从零开始构建一个性能优良的图像识别算法,也可以从Google在ImageNet数据集上训练得到的inception model(一个预训练模型)起步,来识别图像。一个预
转载
2024-01-17 08:01:21
47阅读
1、先别着急写代码训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。
Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。
转载
2023-07-31 16:44:18
74阅读
神经网络构建好,训练不出好的效果怎么办?明明说好的拟合任意函数(一般连续)(为什么?可以参考http://neuralnetworksanddeeplearning.com/),说好的足够多的数据(https://en.wikipedia.org/wiki/Occam's_razor),仔细设计的神经网络都可以得到比其他算法更好的准确率和泛化性
转载
2023-11-08 00:30:54
64阅读
1、 前提条件:可以上网,拥有谷歌账号2、 创建Google drive3、 进入到google drive中,点击New,新建一个Folder,命名为“craters”(这里自己取名字)可以看到4、 右键,点击connect more apps,然后搜索colaboratory,并且添加5、 然后右键,more->google colaboratory,建立了一个后缀名为.ipynb的文件
转载
2023-10-18 22:31:53
82阅读
如何训练神经网络1、先别着急写代码训练神经网络前,别管代码,先从预处理数据集开始。我们先花几个小时的时间,了解数据的分布并找出其中的规律。Andrej有一次在整理数据时发现了重复的样本,还有一次发现了图像和标签中的错误。所以先看一眼数据能避免我们走很多弯路。由于神经网络实际上是数据集的压缩版本,因此您将能够查看网络(错误)预测并了解它们的来源。如果你的网络给你的预测看起来与你在数据中看到的内容不一
转载
2023-10-31 22:00:02
129阅读
神经网络的训练是一个复杂的问题,很多时候会遇见即使拿到了别人的代码也训练不出来,无法复现。 以下是37个关于训练网络的建议1.最基本的措施从已知适用于此类数据的简单模型开始(例如,VGG用于图像)。如果可能,使用标准损失。关闭训练的小技巧。如正则和数据增强。如果微调一个模型,检查预处理操作,要保证和原始模型训练的预处理操作一样。验证输入数据是否正确。从一个非常小的数据集开始(2-20个样本)。在它
转载
2023-11-24 10:49:26
37阅读
# 1.神经网络的学习前提和步骤前提神经网络存在合适的权重和偏置。步骤一(挑选mini-batch)从训练数据中随机选出一部分数据,这部分数据称为mini-batch。 我们的目标是减少mini-batch这部分数据的损失函数的值。步骤二(计算梯度)为了减小mini-batch这部分数据的损失函数的值,需要求出有关各个权重参数的梯度。步骤三(更新参数)将权重参数沿梯度方向进行微小更新。步骤四(重复
转载
2024-01-13 06:54:07
159阅读
下文将简单介绍训练卷积神经网络中使用到的权重初始化、梯度下降优化器的选择及计算原理、常用的正则化方法、超参数的调节。1. 权重初始化 权重初始化是训练人工神经网络很重要的一部分。有一种想法是:由于我们知道能通过梯度下降反向传播来优化、更新权重,只要经
转载
2023-10-13 00:01:34
160阅读
通常,训练一个具有一定实用价值的深度神经网络是非常消耗计算时间的。所以在使用时,最好的方法是导入已经训练好的模型,重用它,而不是每次都重新训练。如果要在TensorFlow中保存已经训练好的神经网络模型,所需的核心方法就是Saver.save,它位于Saver类中:Saver类提供了向checkpoints文件保存和从checkpoints文件中恢复变量的相关方法。Checkpoints文件是一个
转载
2023-10-23 13:03:11
86阅读
简单神经网络训练流程1)设置步长lr,动量值gamma,迭代次数epochs,batch_size等信息,(如果需要)设置初始权重w0; 2)导入数据,将数据切分成batches; 3)定义神经网络框架; 4)定义损失函数L(w),如果需要,将损失函数调整成凸函数,以便求解最小值; 5)定义所使用的优化算法; 6)开始在epoches和batch上循环,执行优化算法: 6.1)调整数据结构,确定数
转载
2024-04-07 20:47:17
90阅读