作者:Andrés Camilo Rodríguez编译:ronghuaiyang导读通过低分辨率卫星图像,对亚像素物体进行计数,误差<5%。 椰子树预测 我们可以使用深度学习模型在亚像素尺度上对物体进行计数吗?深度学习已经成功地在好几个任务上实现了自动化,我们想要停掉使用人工操作的任务,但是哪些任务对于人类来说是困难的呢? 这是一颗来自欧洲航天局的免费卫星Sentinel-2,拍摄的是加
关键词:相机位姿估计,单目尺寸测量,环境探知用途:基于相机的环境测量,SLAM,单目尺寸测量文章类型:原理说明、Demo展示@Author:VShawn@Date:2016-11-28@Lab: CvLab202@CSU目录《相机位姿估计0:基本原理之如何解PNP问题》《相机位姿估计1:根据四个特征点估计相机姿态》《相机位姿估计1_1:OpenCV:solvePnP二次封装与性能测试》《相机位姿估
一、工具篇 工欲善其事,必先利其器。学习OpenCV,肯定少不于基本的编程工具与OpenCV库。在Windows平台下你可以选择Visual Studio、CodeBlock等,当然你也可以选择在Linux平台,用VI、codeBlock都是可以的。编程平台的选择看个人爱好以及项目的开发环境。然后是OpenCV库,你可以在这里下载到最新的版本:http://opencv.org/,最近的版本已经
一、什么是计算机视觉计算机视觉这种技术可以将静止的图像或视频数据转换为一种决策或新的表示。所有这样的转换都是为了完成某种特定的目的而进行的。输入数据可能包含一些场景信息,例如“相机是搭载在衣领车上的”或者“雷达发现了一米之外有一个目标”。表示形式是将色彩图像转换为黑白图像,或者从一个图像序列中消除相机运动所产生的影响。非计算机专业人士可能会觉得计算机视觉是一种很简单的任务,但是这是一种由于人类是视
4.2 捕获深度摄像头的帧 深度图:它是灰度图像,该图像的每个像素值都是摄像头到物体表面之间距离的估计值。比如,CAP_OPENNI_DEPTH_MAP通道的图像给出了基于浮点数的距离,该距离以毫米为单位。 点云图:它是彩色图像,该图像的每种颜色都对应一个 (x、y或z)维度空间。比如,CAP_ OPENNI POINT_ CLOUD_ _MAP通道
转载 2024-04-08 00:00:19
83阅读
第6章主要从图像内容和像素的角度介绍了有关图像处理的一些内容,包括如何对图像进行滤波和变换操作,或以不同的方式对像素值进行处理。对于模板匹配,我们仅利用原始像素内容来获取结果,以确定特定对象是否存在于图像的某一部分中。但是,我们尚未学习如何设计算法来区分不同类型的对象。为此目的,不仅要利用原始像素,而且还要利用图像基于特定特征所呈现出的集体含义。对于人类来说,假定不是极端相似,识别和区分不同类型的
我们可以将数字图像理解成一定尺寸的矩阵,矩阵中每个元素的大小表示了图像中每个像素的亮暗程度,因此统计矩阵中的最大值,就是寻找图像中灰度值最大的像素,计算平均值就是计算图像像素平均灰度,可以用来表示图像整体的亮暗程度。因此针对矩阵数据的统计工作在图像像素中同样具有一定的意义和作用。在OpenCV 4中集成了求取图像像素最大值、最小值、平均值、均方差等众多统计量的函数,接下来将详细介绍这些功能的相关函
转载 2024-03-26 08:16:51
40阅读
学更好的别人,做更好的自己。——《微卡智享》本文长度为2020字,预计阅读6分钟 OpenCV图片修复最近重新学习OpenCV的基础,偶然间发现了npaint的函数,于是就自己做了Demo测试了下,感觉还不错,这篇就来分享一下OpenCV的图片修复函数。实现效果上图中可以看到我们对左边源图中右下角蓝色的球区域进行的修复,修复后右图的效果那个蓝色的球就已经不见了。inpaint函数APIvoid
视差图建立
转载 2021-06-23 16:28:40
324阅读
视差图建立
3D
原创 2021-07-16 17:00:37
252阅读
第6章主要从图像内容和像素的角度介绍了有关图像处理的一些内容,包括如何对图像进行滤波和变换操作,或以不同的方式对像素值进行处理。对于模板匹配,我们仅利用原始像素内容来获取结果,以确定特定对象是否存在于图像的某一部分中。但是,我们尚未学习如何设计算法来区分不同类型的对象。为此目的,不仅要利用原始像素,而且还要利用图像基于特定特征所呈现出的集体含义。对于人类来说,假定不是极端相似,识别和区分不同类型的
 1 现状从立体图像中估计深度信息对于计算机视觉的应用至关重要,包括车辆的自动驾驶,3D模型重建和物体的检测与识别。由于各种现实问题,例如遮挡,大的无纹理区域(例如天空,墙壁等),反射表面(例如窗户),薄结构和重复纹理,这是具有挑战性的。本文主要对基于深度学习的双目匹配与视差估计方法进行调研。2 方法    对于一对矫正过的立体图像,深度信息估计的目标就是计
OpenCV中,图像的像素值是以一个多维数组的形式表示的。上一篇已经介绍了cv::Mat类。对于图像中的每一个像素,可以通过Mat对象中的at<type>(i,j)函数(type可以是uchar、int等)获得Mat对象的像素值。访问像素值:cv::Vec3b pixel = image.at<cv::Vec3b>(y, x); // 获取指定像素处的像素值 unsign
         今天在看矩形滤波的时候忽然脑子短路,把一些概念全弄混了,现总结一下,以便下次再混的时候可以参考确认下,自己的理解,有错的地方还请指正。         首先,在Opencv2中基本上都是用的Mat来表示图像了,C++的函数调用中基本上也都是Mat图,从根本上说,一张图像是一个由数值
Image Basics 一切的开始:图像的基础-像素(pixel),如何通过像素生成图像,如何通过OpenCV来操控图像中的像素点。像素的定义熟悉的可以暂时跳过这一段,主要来科普图像的组成。比如说我们常见的一个显示器的分辨率是1080p(蓝光)其标准大小为1920x1080 也就是,长:1920个像素;宽:1080个像素点。合起来总共是1920x1080=2073600个像素点。目前我们常见的图
今天在看矩形滤波的时候忽然脑子短路,把一些概念全弄混了,现总结一下,以便下次再混的时候可以参考确认下,自己的理解,有错的地方还请指正。         首先,在Opencv2中基本上都是用的Mat来表示图像了,C++的函数调用中基本上也都是Mat图,从根本上说,一张图像是一个由数值组成的矩阵,矩阵的每一个元素
转载 2024-02-20 21:08:32
53阅读
摘要我们在图像处理时经常会用到遍历图像像素点的方式,在OpenCV中一般有四种图像遍历的方式,在这里我们通过像素变换的点操作来实现对图像亮度和对比度的调整。数据格式千万不要搞错:uchar对应的是CV_8U,char对应的是CV_8S,int对应的是CV_32S,float对应的是CV_32F,double对应的是CV_64F。补充: 图像变换可以看成像素变换——点操作邻域变换——区域操
转载 2023-06-04 18:41:36
397阅读
Opencv像素处理与访问对于图像处理来说,如果我们了解处理图像的具体算法,那么我们就可以通过直接操作图片的像素点来实现这些算法。所以本文就总结一下Opencv像素处理和访问的一些知识。 文章目录Opencv像素处理与访问1. 色彩空间缩减1.1色彩空间缩减的必要性1.2 查找表方法缩减色彩空间1.3 LUT函数2. 判断程序的运行效率3. 访问图像中像素的方法3.1 指针3.2 迭代器3.3 动
    Opencv中图像的遍历与像素操作 我们先来介绍下cv::Mat类的获取像素的成员函数at(),其函数原型如下:template<typename _Tp> _Tp& at(int i0, int i1); //由于Mat可以存放任意数据类型的元素,所以该函数是用模板函数来实现的 //它本身不会进行任何数据类型转换,在调用的过程
IplImage是OpenCV中CxCore部分基础的数据结构,用来表示图像,其中Ipl是Intel Image Processing Library的简写。 typedef struct _IplImage { int nSize; /* IplImage大小 */ int ID; /* 版本 (=0)
转载 2024-03-19 08:33:37
56阅读
  • 1
  • 2
  • 3
  • 4
  • 5