今天更新一下用OpenCV的C++代码实现单目相机标定,所用图片和上一篇文章相同,都是2000W像素的标定板图片。这里的标定代码调用的是opencv4.5.3源码的sample样例代码。可以在E:\opencv--c++\opencv-4.5.3\sources\samples\cpp\tutorial_code\calib3d\camera_calibration找到所有标定程序所需的文件。其中
转载
2024-09-26 14:47:48
117阅读
这个程序是对26幅图像的处理过程,使用了一种新的方法实现对规则命名图像的循环读取,一大收获,程序如下:
// CamCalib.cpp : 定义控制台应用程序的入口点。
//
//#include "stdafx.h"
#include<iostream>
#include <cv.h>
#include <highgui.h>
#include &
使用opencv实现单目标定相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像。相机标定的输入:标定图像上所有内角点的图像坐标,标定板图像上所有内角点的空间三维坐标(一般情况下假定图像位于Z=0平面上)。相机标定的输出:摄像机的内参、外参系数。这三个基础的问题就决定了使用Opencv实现
转载
2024-05-08 22:24:28
333阅读
相机标定(Camera Calibration)-学习笔记 文章目录相机标定(Camera Calibration)-学习笔记一、简介二、原理1. 坐标系 *coordinates*2. 相机参数 *camera matrix*2.1 外参数矩阵2.2 内参数矩阵2.3 畸变矩阵2.3.1 径向畸变2.3.2 切向畸变2.4 小结三、相机标定方法1. 张正友相机标定四、参考文章 一、简介在图像测量
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码一、前言今天的低价单孔摄像机(照相机)会给图像带来很多畸变。畸变主要有两 种:径向畸变和切想畸变。如下图所示,用红色直线将棋盘的两个边标注出来, 但是你会发现棋盘的边界并不和红线重合。所有我们认为应该是直线的也都凸 出来了。在 3D 相关应用中,必须要先校正这些畸变。为了找到这些纠正参数,我们必 须要提供一些包含明
转载
2023-10-26 11:03:37
1039阅读
从摄像机成像畸变的产生于是其“天生”的,不可避免的,这主要是由于透镜成像原理导致的。其畸变的原理可以参考相机模型)。它的畸变按照原理可以分解为切向畸变和径向畸变。 畸变校正opencv提供了可以直接使用的矫正算法,即通过calibrate Camera()得到的畸变系数,生成矫正后的图像。我们可以通过undistort()函数一次性完成;也可以通
转载
2024-03-20 20:04:16
318阅读
相机标定步骤输入一系列三维点和它们对应的二维图像点。1、在黑白相间的棋盘格上,二维图像点很容易通过角点检测找到。2、而对于真实世界中的三维点呢?由于我们采集中,是将相机放在一个地方,而将棋盘格定标板进行移动变换不同的位置,然后对其进行拍摄。所以我们需要知道(X,Y,Z)的值。但是简单来说,我们定义棋盘格所在平面为XY平面,即Z=0。对于定标板来说,我们可以知道棋盘格的方块尺寸,例如30mm,这样我
转载
2024-04-16 13:37:29
317阅读
本文着重阐述以下问题: halcon是否只能使用halcon专用的标定板?halcon标定板如何生成?halcon标定板如何摆放,拍照数量有无限制?halcon是否只能使用halcon专用的标定板? halcon提供了简便、精准的标定算子并且提供了标定助手,这无疑大大方便了广大开发者。在halcon中有两种方式可以进行标定:如halcon自带例程中出现的,用halcon定义的标
转载
2024-10-10 13:33:33
80阅读
首先看看棋盘,就是那种国际象棋的棋盘,就是我们要使用的标定板,标定板也分了几种。· 普通棋盘· 圆点· 非对称圆点后面会写棋盘和圆点的区别,这里先讲棋盘。前面讲相机标定是将三维世界的场景映射为二维的图片,映射过程有很多步,也就是如何从世界坐标系转换到像素坐标系的过程。从世界坐标系到相机坐标系:R是旋转矩阵,t是平移矩阵,从世界坐标系到相机坐标系可以通过旋转平移得到,这个变化过程会得到一个变换矩阵,
转载
2024-04-16 13:45:58
316阅读
<span style="font-family:SimHei;font-size:18px;">0 前言
最近一直在看关于目标跟踪方面的算法实现,也是时候整理下思路看看怎么实现了。 这次我将带领大家看看基于
OpenCV的目标跟踪算法及其基本实现。由于目标跟踪方法众多,我将分为几次讲解逐个讲解。当然只是起个索引的
效果,要好的跟踪实现有待自己去深化。
概述
转载
2024-04-07 14:30:59
57阅读
今天的低价单孔摄像机(照相机)会给图像带来很多畸变。畸变主要有两 种:径向畸变和切想畸变。如下图所示,用红色直线将棋盘的两个边标注出来, 但是你会发现棋盘的边界并不和红线重合。所有我们认为应该是直线的也都凸 出来了。在 3D 相关应用中,必须要先校正这些畸变。为了找到这些纠正参数,我们必 须要提供一些包含明显图案模式的样本图片(比如说棋盘)。我们可以在上面找 到一些特殊点(如棋盘的四个角点)。我们
转载
2024-03-06 12:19:43
266阅读
1.基本介绍手眼标定两种形式 眼在手外 eye to hand 眼在手上 eye in hand2.公式推导 眼在手上类似3.方程AX=XB求解4.opencv完成手眼标定 眼在手上 1.Rend2base机械臂末端到基点的变换矩阵,可从示教器或者在ROS直接订阅相关tf 2.Rboard2cam 标定板到相机,pnp求出眼在手外 1.Rbase2end,跟眼在手上相反 2.跟眼在手上相同。5.初
转载
2023-11-02 09:07:14
501阅读
MEI模型是一个常见的鱼眼相机模型,下面试图解析VinsFusion使用的camera_models中的MEI模型.源码链接:CataCamera(本文公式较多,建议在电脑端打开!!!) (本文公式较多,建议在电脑端打开!!!) (本文公式较多,建议在电脑端打开!!!)MEI模型对于此模型来说,核心就是在轴添加了一个偏移,这样可以使得水平摄入的光线也可以投影到图像的像素区域内,
转载
2022-10-04 18:28:56
832阅读
# Python Mei相机模型去畸变
## 引言
在计算机视觉领域,畸变是指相机在拍摄图像时,由于光学特性导致图像变形的现象。相机畸变主要分为径向畸变和切向畸变,影响图像的几何形状和测量准确性。Python中有多种库可以帮助处理畸变问题,其中使用Mei相机模型去畸变是一个重要的方法。本文将以Python为例,讲解如何使用Mei相机模型去除图像中的畸变。
## Mei相机模型
Mei相机模
OpenCV库自带了一个可以用于相机标定的功能,不仅可以标定最常见的棋盘格标定板,还可以用于Halcon常用的圆点阵列标定板。 以下对如何使用该自带例程进行相机标定进行一个简要的介绍,也算是对之前工作的一个总结。
转载
2024-03-26 15:38:21
718阅读
Camera Calibration1.OpenCV Camera CalibrationOpenCV提供具体的标定策略和说明文档,可以直接使用,说明文档的位置"D:\opencv\sources\doc\tutorials\calib3d\camera_calibration";例程的位置“D:\opencv\sources\samples\cpp\camera_calibration.cpp”
转载
2024-05-24 06:10:44
189阅读
一、HMM HMM属于生成模型,模型中2个假设:输出观测值之间相互独立;齐次一阶Markov,即状态的转移过程中当前状态只与前一状态有关。二、MEMM 求和的作用在概率中是归一化,但是这里归一化放在了指数内部,管这叫local归一化。 来了,viterbi求解过程,是用dp的状态转移公式(MEMM的没展开,请参考CRF下面的公式),因为是局部归一化,所以MEMM的viterbi的转移公式的第二部分
转载
2024-04-07 12:45:20
117阅读
注意:棋盘图不能动,此时从左右摄像头各采集一副图片,Matlab 需要标定多张图片,不能单只标定一张,可能会在标定或保存结果的过程中出错。Matlab 标定工具箱保存的位置也并不是必须在安装文件夹下,可用户定义1 首先下载matlab 标定工具箱 http://www.vision.caltech.edu/bouguetj/calib_doc/download/index.html或者链
手势识别系列文章目录手势识别是一种人机交互技术,通过识别人的手势动作,从而实现对计算机、智能手机、智能电视等设备的操作和控制。1. opencv实现手部追踪(定位手部关键点)2.opencv实战项目 实现手势跟踪并返回位置信息(封装调用)3.手势识别-手势音量控制(opencv)4.opencv实战项目 手势识别-手势控制鼠标未完待续本专栏记录作者的学习之旅会一直更新下去,欢迎订阅一起
使用Opencv实现张正友法相机标定之前,有几个问题事先要确认一下,那就是相机为什么需要标定,标定需要的输入和输出分别是哪些?相机标定的目的:获取摄像机的内参和外参矩阵(同时也会得到每一幅标定图像的选择和平移矩阵),内参和外参系数可以对之后相机拍摄的图像就进行矫正,得到畸变相对很小的图像。相机标定的输入:标定图像上所有内角点的图像坐标,标定板图像上所有内角点的空间三维坐标(一般情况下假定图像位于Z
转载
2024-05-24 18:02:38
390阅读