KCF: Kernelized correlation filterKCF是一种鉴别式追踪方法,这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置是否是目标,然后再使用新检测结果去更新训练集进而更新目标检测器。而在训练目标检测器时一般选取目标区域为正样本,目标的周围区域为负样本,当然越靠近目标的区域为正样本的可能性越大。论文:High-Speed Tracking
转载 2024-04-29 22:03:59
284阅读
      随着20世纪后期引入便宜的针孔相机,它们在日常生活中成为常见的事件。不幸的是,这种廉价的价格是:显著的扭曲。幸运的是,这些是常数,校准和一些重新映射,我们可以纠正这一点。此外,通过校准,您还可以确定相机的自然单位(像素)与实际单位之间的关系(例如毫米)。理论对于失真,OpenCV考虑到径向和切向因素。对于径向因子,使用以下公式:因此,对于坐标处的未失真像素
转载 2024-03-27 12:17:40
52阅读
对于刚入门的OpenCV玩家,提起目标跟踪,马上想起的就是camshift,但是camshift跟踪往往达不到我们的跟踪要求,包括稳定性和准确性。 opencv3.1版本发行后,集成了多个跟踪算法,即tracker,大部分都是近年VOT竞赛榜上有名的算法,虽然仍有缺陷存在,但效果还不错。 ps:我在知乎上看到一个目标跟踪的介绍,感觉不错,链接在此! 单目标跟踪很简单,放一个官方例程供参考(ope
转载 2024-03-12 15:45:39
110阅读
文章目录一、黑白图片二、HSV颜色空间三、OpenCV中的HSV1. HSV二值化处理的函数:2. HSV颜色范围的选取:四、颜色直方图的获取与目标跟踪1. 颜色直方图的获取2.基于颜色直方图的目标跟踪五、camshift算法原理1. 色彩投影图(反向投影):2. meanshift3. camshift算法过程4. OpenCV中相关API1. 直方图2. CamShift函数六、基于颜色特征
我们拍摄场景无非也就是那么几种人像、风光、花草、宠物等等,但是新手往往刚开始不知道怎么去拍摄,今天我们就来讲解一下这几种场景的相机拍摄设置以及拍摄技巧! 一、拍摄人像拍摄人像一般我们都会用大光圈(F2.8)或者长焦去拍摄,拍摄模式可以用AV(光圈优先模式),可以拍摄出背景虚化的效果,突出人物主体。要是拍摄人物运动的时候,光圈优先模式怕是不行了,我们这个时候就得用TV(快门优先模式)了,
视觉跟踪跟踪 目标跟踪:在图像序列中持续地估计感兴趣运动目标所在区域(位置),形成运动目标的运动轨迹;有时还需要估计出运动目标某些运动参数(速度、加速度)相机跟踪(定位):通过图像序列,持续地计算出相机的位置、姿态(SLAM)目标跟踪问题分类 场景中运动目标数目:单运动目标 vs. 多运动目标 多目标跟踪必须考虑到多个目标在场景中会互相遮挡(Occlusion),合并(Mer
​1、前言由于事件相机不能提供完整的图像,所以最初的特征跟踪依赖传统相机的数据。本推送介绍事件相机特征检测与跟踪的一篇较早的工作:Feature Detection and Tracking with the Dynamic and Active-pixelVision Sensor (DAVIS),由ETH发表于2016年,衍生出了其它的方法,也被作为一类典型的特征追踪思路,即利用传统图形进行初
原创 2022-10-05 08:05:24
371阅读
前言:最近在看跟踪算法,看了下比较久远的meanshift、Lk光流算法等,感觉效果和速度都不是很满意。直到我看了KCF跟踪算法,这个算法速度快,效果好,具有很强的鲁棒性,思路清晰。此外作者在主页上给出了matlab和c的代码,可以更好的理解算法。本来我打算叙述一下算法的原理,但是因为网上已经有了很好的博客对KCF进行了详细的介绍,对论文原理进行了推导,所以我打算从另一个方面去看算法——从代码上看
1. CamShift思想               Camshift全称是"Continuously Adaptive Mean-SHIFT",即连续自适应的MeanShift算法,是MeanShift算法的改进。CamShift的基本思想是视频图像的所有帧作MeanShift运算,并
转载 2024-05-09 16:11:21
504阅读
知识要点1. OpenCV目标跟踪算法的使用大概可以分为以下几个步骤:创建MultiTracker对象:  trackers = cv2.legacy.MultiTracker_create()读取视频或摄像头数据:  cap = cv2.VideoCapture('./videos/soccer_02.mp4')框选ROI区域:  roi = cv2.selectR
一、简介         本文章的起源是本人在做一个项目,用摄像头识别笔,根据笔的运动,绘制出其轨迹。主要应用到的方法,有运动物体识别、运动物体检测,以及绘制运动物体的运动轨迹。1、 运动物体的识别方法很多,主要就是要提取相关物体的特征,主要分为:     &
在前面的报告中我们实现了用SURF算法计算目标在移动摄像机拍摄到的视频中的位置。由于摄像机本身像素的限制,加之算法处理时间会随着图像质量的提高而提高,实际实验发现在背景复杂的情况下,结果偏差可能会很大。本次改进是预备在原先检测到的特征点上加上某种限制条件,以提高准确率。问题:如何判定检测到的特征点是否是我们需要的点(也就是目标区域上的点)?可行方案:用形态学找出目标的大致区域,然后对特征点判定。特
转载 2024-03-01 15:21:48
101阅读
常用的标定函数和流程,网上一大堆,这里就不想详细写了 这里说一下标定后常见的问题和我自己的一些做法。1.标定后丢失部分像素信息畸变校正后,边缘处出现一些黑色像素区域,其实也算是正常的,图片去畸变后补充的像素可以用initUndistortRectifyMap,传递新的相机参数矩阵得到新的mapx,mapy来解决。代码如下Mat NewCameraMatrix = cameraMatrix.clon
转载 2024-04-15 12:42:08
162阅读
目录1. 内参与畸变2. 用OpenCV标定相机程序3.画棋盘标定板4.OpenCV拍照 1. 内参与畸变理论部分可以参考其他博客或者视觉slam十四讲 相机标定主要是为了获得相机的内参矩阵K和畸变参数内参矩阵K畸变系数:径向畸变(k1,k2,k3), 切向畸变(p1,p2)径向畸变公式切向畸变公式张正友标定方法能够提供一个比较好的初始解,用于后序的最优化.这里用棋盘格进行标定,如果能够处理圆的
Android笔记③--OpenCV实现简易相机前言:项目需要,需要在开发板上实现视频监控以及拍照的功能。由于android.hardware.camera已被Google弃用,而camera2又不能在开发板上愉快地玩耍(4.0.3系统),因此只能通过OpenCV实现。在使用OpenCV实现的过程中,使用的是最简单的方法,即通过OpenCV Manager进行动态库的链接,且实现最简单的帧预览以及
转载 2023-11-02 13:53:53
224阅读
目录1. 坐标系转换1.1 各个坐标系的定义1.1.1 像素坐标系1.1.2 图像坐标系1.1.3 相机坐标系1.1.4 世界坐标系1.2 相机的内参和外参2. 图像畸变及畸变矫正2.1 相机的畸变模型2.1.1 径向畸变(参数:k1,k2,k3)2.1.2 切向畸变 (参数:p1,p2)2.2 畸变矫正3. 相机标定代码解读3.1 角点检测3.2 标定参数3.3 计算标定误差3.4 畸变矫正3
转载 2024-09-02 09:52:39
383阅读
1点赞
1 查看支持的参数这里记录一下关于cv2配置摄像头曝光等参数的问题,可以参考文章:Python 下opencv 应用: 摄像头参数设置 关于参数的含义,可以参考:OpenCV VideoCapture.get()参数详解如果不能确定上面(包括本文博客的时效性),可以自己去opencv官方文档,找最新的文档,例如:https://docs.opencv.org/4.5.2/,然后从中搜索videoi
  Opencv自带的sample code有关于camera calibration的示例代码,但是在这里我使用的是Learning OpenCV3的示例,在其代码基础上上稍微做了一点改动。之所以不用opencv自带的例子,是因为Learning OpenCV3的代码更加简单,可以更容易的抓住代码的核心。本节使用的项目代码可以在这里下载到。一、运行示例  在下载完整个工程以后,按照工程使用说明,
1、根据真实世界与图像坐标角点坐标对应关系计算相机内参矩阵与相机外参矩阵的积,即矩阵H; 2、根据图像的单应性矩阵构建点对应关系求解相机内参(理论至少需要三张图,因为内参矩阵构建的对称矩阵B有6个自由度,一张图只能提供两个方程);此处可参考:中(三,2) 3、求解相机外参 4、求解相机畸变因子#include <iostream> #include <fstream> #i
目标跟踪指的是对视频中的移动目标进行定位的过程。在如今AI行业有着很多应用场景,比如监控,辅助驾驶等。对于如何实现视频的目标跟踪,也有着许多方法。比如跟踪所有移动目标时,视频每帧之间的变化就显得很有用。如若视频背景不变,即可利用背景变化实现目标跟踪。还有之前我们实现过的「跳一跳」小游戏。其中的模板匹配,也是一种目标跟踪方法,能够很好的跟踪到小跳人的位置。接下来看一下一些简单的目标跟踪案例。/ 01
原创 2020-12-24 16:03:07
1487阅读
  • 1
  • 2
  • 3
  • 4
  • 5