目标跟踪作为机器学习的一个重要分支,加之其在日常生活、军事行动中的广泛应用,很多国内外学者都对此颇有研究。本文将讨论OpenCV上八种不同的目标追踪算法。虽然我们熟知的的质心追踪器表现得很好,但它需要我们在输入的视频上的每一帧运行一个目标探测器。对大多数环境来说,在每帧上进行检测非常耗费计算力。所以,我们想应用一种一次性的目标检测方法,然后在之后的帧上都能进行目标追踪,使这一任务更加快速、更高效。
追踪的目的是在当前帧找到前一帧确定的对象。因为我们要在当前帧确定其对象位置,因此我们需要知道它是如何运动的,换句话说,需要知道运动模型参数。 如果对象非常简单且没有什么外貌上的变化,我们可以使用模板匹配。但是现实并未如此,当前模型可能随时随地变换(如人脸,你可能下一秒变成侧脸)。 Opencv中集成了诸多算法,随着其不断更新,算法的种类也越来越多,3.3版本的算法种类是6种-BOOSTING,
转载 2023-07-05 13:04:40
233阅读
使用Python+opencv的物体追踪,也是采用了颜色追踪的方法利用将一副图像从BGR转换到HSV,可以利用这一个点来提取某个特定颜色的物体。在HSV颜色空间中要比BGR空间中更容易显示特定颜色。在我们的程式中,我们提取的是一个蓝色的物体。下面就是需要做的几步: * 从视频中获取每一帧图像 * 将图像转换到HSV空间 * 设置HSV阈值到蓝色范围 * 获取蓝色物体,当然我们还可以做其他我们想做的
转载 2023-06-30 10:33:40
190阅读
跟踪就是在连续视频帧中定位物体,通常的跟踪算法包括以下几类:1. Dense Optical Flow 稠密光流2. Sparse Optical Flow 稀疏光流 最典型的如KLT算法(Kanade-Lucas-Tomshi)3. Kalman Filter4. Meanshift and Camshift5. Multiple object tracking需要注意跟踪和识别的区别,通常来说
转载 2023-05-31 13:45:39
385阅读
# Python OpenCV物体追踪教程 ## 介绍 在这篇文章中,我将教会你如何使用PythonOpenCV库实现物体追踪OpenCV是一个强大的计算机视觉库,提供了许多方便的功能来处理图像和视频。物体追踪是计算机视觉中一个非常重要的任务,它可以用于许多应用程序,如视频监控、自动驾驶等。 ## 整体步骤 下面是实现物体追踪的整体步骤: | 步骤 | 描述 | |:---:|:---|
原创 2023-07-22 18:36:22
193阅读
# Python OpenCV 目标追踪入门教程 在现代计算机视觉中,目标追踪是一个极其重要的技术,它可以识别并追踪视频流中的特定目标。在这篇文章中,我们将一步步教你如何使用 PythonOpenCV 实现目标追踪。整个流程如下表所示: | 步骤 | 描述 | |--------|-----------------------------
原创 1月前
28阅读
# Python OpenCV手指追踪实现教程 ## 引言 大家好,我是一名经验丰富的开发者,今天我将教大家如何使用PythonOpenCV实现手指追踪的功能。对于刚入行的小白来说,学习如何实现这个功能可能有些困惑,但是不用担心,我将一步步地向你展示整个过程。 ## 整体流程 首先,我们需要了解整个实现过程的流程。下面是一个展示了手指追踪实现步骤的表格: ```mermaid journe
原创 2023-09-18 07:04:49
188阅读
# 实现Python opencv物体追踪教程 ## 整体流程 下面是实现Python opencv物体追踪的整体流程: | 步骤 | 操作 | |------|-------------| | 1 | 读取视频 | | 2 | 初始化追踪器 | | 3 | 选择初始目标 | | 4 | 追踪目标 | ## 每一步具体操作 ### 步骤1:
原创 6月前
60阅读
一、开发环境   树莓派的操作系统为官网推荐的操作系统Raspbain,摄像头用的是手动调焦的USB网络摄像头,三十万像素。视觉图像处理采用OpenCV-3.4.1,至于如何在树莓派上装OpenCV,请自行百度   PS:为了给树莓派装上OpenCV的开发环境是个艰难历程,前后花了两天时间,经历了各种坑,树莓派前后共不停的编译了9个小时才成功装上了OpenC
# -*- coding:utf-8 -*-import numpy as npimport argparseimport cv2points=[]opencv
ide
原创 2022-11-10 14:34:53
136阅读
今天开始接触目标跟踪参考有道翻译一、Object Tracking1.物体跟踪就是在连续的视频帧中定位一个物体。这个定义听起来直截了当,但在计算机视觉和机器学习中,跟踪是一个非常广泛的术语,它包含概念上相似但技术上不同的概念。例如,以下所有不同但相关的思想通常在对象跟踪下研究:(1)稠密光流(Dense Optical flow DOF):这些算法有助于估计视频帧中每个像素的运动矢量。(2)稀疏光
目标跟踪就是识别移动目标的过程,并且跨帧跟踪这些目标,为了跟踪视屏中的目标,首先要做的就是识别出可能包含目标的区域。目前有很多视频目标跟踪的方法:当跟踪所有移动目标时,帧之间的差异很重要当跟踪移动的手时,基于皮肤颜色的均值漂移方法最好当跟踪对象知道的时候,模板匹配更好1.基本的运动检测import cv2 import numpy as np camera = cv2.VideoCapture(
# Python基于OpenCV篮球追踪总结 OpenCV是一个开源的计算机视觉库,可以用于实时图像处理、人脸识别、物体追踪等。本篇文章将介绍如何使用Python基于OpenCV实现篮球追踪的过程,并提供相应的代码示例。 ## 篮球追踪流程 篮球追踪主要包括以下几个步骤: 1. 读取视频流或摄像头捕获的实时画面 2. 在画面中检测篮球的位置 3. 根据篮球的位置进行追踪 4. 显示追踪结果
原创 3月前
75阅读
二.算法原理 1、camshift利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的中心位置。camshift的核心步骤仍然是Meanshift,只是在距离相似性度量的基础之上,又增加了图像灰度相似性的度量。两者共同作用,实现了目标的跟踪。2、camshift算法目标跟踪其具体步骤可以理
     接触图像领域的应该对于opencv都不会感到陌生,这个应该算是功能十分强劲的一个算法库了,当然了,使用起来也是很方便的,之前使用Windows7的时候出现多该库难以安装成功的情况,现在这个问题就不存在了,需要安装包的话可以去我的资源中下载使用,使用pip安装方式十分地便捷。       今天主要是基于opencv模块来
转载 2023-10-04 13:38:32
48阅读
什么是目标追踪在视频后续帧中定位一个物体,称为追踪。虽然定义简单,但是目标追踪是一个相对广义的定义,比如以下问题 也属于目标追踪问题:稠密光流:此类算法用来评估一个视频帧中的每个像素的运动向量稀疏光流:此类算法,像Kanade-Lucas-Tomashi(KLT)特征追踪追踪一张图片中几个特征点的位置Kalman Filtering:一个非常出名的信号处理算法基于先前的运动信息用来预测运动目标的
介绍OpenCV 是一个很好的处理图像和视频的工具。无论你是想让你的照片呈现 90 年代的黑白效果,还是执行复杂的数学运算,OpenCV 都可以随时为你服务。如果你对计算机视觉感兴趣,则必须具备 OpenCV 的知识。该库包含 2500 多种优化算法,可用于执行各种任务。它被谷歌、微软、IBM 等许多行业巨头使用,并被广泛用于研究小组。该库支持多种语言,包括 java、c++ 和 python。本
    本文中的知识来自于Mastering  opencv with practical computer vision project一书。shape model形状模型,就是训练数据表示为什么样的形状模型;feature detector特征检测,检测目标脸中的特征;fitting algorithm适应算法,就是匹配算法,匹配检测到的目标特征点和训练
译自:https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/,有删改。本教程中,我们将学习OpenCV 3中新引入的一些目标跟踪API,包括BOOSTING, MIL, KCF, TLD, MEDIANFLOW和GOTURN,此外还将介绍现代跟踪算法中的一般理论。什么是目标跟踪?简单来说,在视频的连续帧中定位目标即为
什么是对象跟踪?简而言之,在视频的连续帧中定位对象称为跟踪。该定义听起来很直接,但在计算机视觉和机器学习中,跟踪是一个非常广泛的术语,涵盖概念上相似但技术上不同的想法。例如,通常在对象跟踪下研究以下所有不同但相关的想法密集光流:这些算法有助于估计视频帧中每个像素的运动矢量。稀疏光流:这些算法,如Kanade-Lucas-Tomashi(KLT)特征跟踪器,跟踪图像中几个特征点的位置。卡尔曼滤波:一
  • 1
  • 2
  • 3
  • 4
  • 5