1.2 Mat的内存管理图像数据量大,不妥善管理好内存会产生很大的问题。OpenCV1.X中多采用C的结构,需要用户自己管理内存,在图像不再使用时调用CvRelease。OpenCV2.X中采用C++面向对象的方式,内存可以由自动申请和释放。 1.2.1 图像头与图像内容OpenCV中,图像的头与图像内容是分开的。如下面这段代码:Mat A = Mat::zeros(800,600, C
转载 2024-04-23 11:02:44
85阅读
Public Member Funcchannels()Mat矩阵元素拥有的通道数。depth()用来度量每一个像素中每一个通道的精度,但它本身与图像的通道数无关。 depth数值越大,精度越高。 Mat.depth()得到的是一个0~6的数字,分别代表不同的位数,对应关系如下:enum{CV_8U=0,CV_8S=1,CV_16U=2,CV_16S=3,CV_32S=4,CV_32F=5,CV_
转载 2024-06-04 11:11:19
82阅读
OpenCV学习之CvMat的用法详解及实例    CvMat是OpenCV比较基础的函数。初学者应该掌握并熟练应用。但是我认为计算机专业学习的方法是,不断的总结并且提炼,同时还要做大量的实践,如编码,才能记忆深刻,体会深刻,从而引导自己想更高层次迈进。1.初始化矩阵: 方式一、逐点赋值式: CvMat* mat = cvCreateMa
转载 2024-03-07 19:03:14
83阅读
Core moudle(基础模块)Mat - The Basic Image Container1.1 Mat首先当然是学习数据结构啦,OpenCV的最最最基本的数据结构MatMat基本上包含两个部分:the matrix header : 包含矩阵的大小、存储方式、存储地址等信息。a pointer to the matrix containing the pixel values:指向矩阵元
转载 2024-02-19 22:01:59
99阅读
文章目录一.图像的存储二.OpenCV中图像坐标系的定义三.OpenCV中的Mat四.OpenCV中的图像存储方式五.显式创建Mat对象1.使用Mat构造函数2.使用C/C++数组初始化Mat3.使用cv::Mat::create函数4.使用cv::Mat::zeros , cv::Mat::ones , cv::Mat::eye 函数.5.使用逗号分隔的初始化器或初始化器列表6.为现有Mat
目标      我们有多种方法可以获得从现实世界的数字图像:数码相机、扫描仪、计算机体层摄影或磁共振成像就是其中的几种。在每种情况下我们(人类)看到了什么是图像。但是,转换图像到我们的数字设备时我们的记录是图像的每个点的数值。      例如在上图中你可以看到车的镜子只是一个包含所有强度值的像素点矩阵。现在,我们如何获
转载 2024-05-08 19:22:39
74阅读
基于VS与OpenCV的模板匹配学习(3):OpenCV Mat 快速遍历 文章目录基于VS与OpenCV的模板匹配学习(3):OpenCV Mat 快速遍历前言一、OpenCV图像类型二、OpenCV指针ptr三、遍历时间对比总结 前言在前文的模板匹配中,基于边缘的模板匹配的速度并不友好,尝试对算法进行时间的优化。其中,对OpenCVMat遍历操作十分普遍,本文结合OpenCVMat的存储结
转载 2024-02-29 18:32:16
180阅读
硬件和软件部分搞定之后,就可以正式上手了。很多书或者教程开始都是介绍OpenCV的历史等等之类的,但是一般人对这些都没兴趣,也不需要知道,所以本文就略过了。 OpenCV系列的第一个实例就是打开图片,而且一般人也不喜欢黑框框。现在找工作都是要求了解一定的图形框架,根据难易程度,我们从Qt开始。同时会添加一些函数或者其他信息。1.1 新建Qt项目 新建Qt项目 1.2 添加库
转载 2024-03-26 14:37:48
117阅读
参考博客:Mat - 基本图像容器 Mat类型较CvMat和IplImage有更强的矩阵运算能力,支持常见的矩阵运算(参照Matlab中的各种矩阵运算),所以将IplImage类型和CvMat类型转换为Mat类型更易于数据处理。关于 Mat ,首先要知道的是你不必再手动地(1)为其开辟空间(2)在不需要时立即将空间释放。但手动地做还是可以的:大多数OpenCV函数仍会
转载 2024-06-25 04:48:09
295阅读
  >>>原始图像目录(1)自定义阈值(threshold)(2)自适应阈值(adaptiveThreshold)(3)大津法(OTSU) (4)示例代码:(1)自定义阈值(threshold)阈值处理是指剔除图像内像素值高于一定值或者低于一定值的像素点。(剔除:变成黑色或白色)(2)自适应阈值(adaptiveThreshold)有一种改进的阈值处理技术,其
1.原始问题:src = imread("**.jpg"); GpuMat srcImg(src); GpuMat hist; gpu::calcHist(srcImg,hist)使用imread载入图像后,再导入到GpuMat中:用calcHist处理srcImg时候出现了内存异常。后来发现是calcHist只能处理CV_8UC1像素类型的图像,但是src
原创 精选 2016-07-11 19:25:16
894阅读
cv::Mat M(8, 9, CV_8UC3); M.setTo(25); //将值全部设置成255 cv::Rect r1(1, 1, 4, 3); M(r1).setTo(200); //指定像素点区域的值都设置成200 M.at<cv::Vec3b>(0,0)[1]=99; M.setTo(
原创 2022-01-25 14:50:47
1089阅读
最近工作接触到了图像处理一块的东西,网上关于opencv安装配置的博客也挺多,但找到的经验并不是所有的都好用,有些大神写的太多反而看着懵逼,所以自己总结与精简了一下,以后再照着操作就好了。(特别认真的同学会发现下面安装的版本和配置截图的版本不是同一个版本,是因为我在不同的机器上对这篇博客做了修改,但这并不影响你的操作,按照流程对你的机器安装并配置工程就可以了)1. 官网下载 : http://op
基于VS与OpenCV的模板匹配学习(4):手写OpenCV matchTemplate() 文章目录基于VS与OpenCV的模板匹配学习(4):手写OpenCV matchTemplate()前言一、OpenCV templmatch源码分析二、平方差度量计算三、高斯金字塔3.1 创建高斯金字塔模板3.2 高斯金字塔策略3.3 findMatchingPosition_GrayValueBase
1 cv::Mat    cv::Mat是一个n维矩阵类,声明在<opencv2/core/core.hpp>中。 class CV_EXPORTS Mat { public: //a lot of methods … /*! includes several bit-fields: - the ma
一、矩阵 Mat I,img,I1,I2,dst,A,B; double k,alpha;Scalar s; //Scalar 是一个结构体,常用来存储像素,比如Scalar s; s=cvGet2D(pImg,x,y); s.val[0],s.val[1],s.val[2]就是对应的图像BGR的值1.加法 I=I1+I2;//等同add(I1,I2,I); add(I1,I2,dst
转载 2024-07-22 17:12:33
44阅读
//<学习OPENCV>第3章 //数据结构基本操作 #include<cv.h> #include<iostream> #include<opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include <cxcore.h> #include<
转载 2024-04-17 16:01:32
152阅读
 1.Mat与lpIlmage对象Mat对象是OpenCV2.0之后引进的图像数据结构、自动分配内存、不存在内存泄漏问题,是面向对象的数据结构。Mat分头部和数据部分。lpllmage是从2001年OpenCV发布之后就一直存在的,是C语言风格的数据结构,需要开发者自己分配和管理内存,容易造成内存泄漏。2.Mat中的常见函数(1)构造函数(2)其他方法void copyTo(Mat ma
Opencv3-StudyOpencv学习笔记(八) -- 图像色彩空间转换yuv422转opencv mat显示OpenCv2 学习笔记(1) Mat创建、复制、释放OpenCv学习笔记(二)--Mat矩阵(图像容器)的创建及CV_8UC1,CV_8UC2等参数详解Mat的几种初始化Mat类之选取图像局部区域画矩形框(普通的与旋转的矩形框)绘制连续多个矩形:捕获右上角×按钮关闭显示窗口事件Op
对图像进行缩放的最简单方法当然是调用resize函数啦!resize函数可以将源图像精确地转化为指定尺寸的目标图像。要缩小图像,一般推荐使用CV_INETR_AREA来插值;若要放大图像,推荐使用CV_INTER_LINEAR。现在说说调用方式第一种,规定好你要图片的尺寸,就是你填入你要的图片的长和高。#include<opencv2\opencv.hpp> #include&l
转载 2024-01-15 15:49:40
37阅读
  • 1
  • 2
  • 3
  • 4
  • 5