在OpenCV中处理结构分析和形状描述(Structural Analysis and Shape Descriptors),大部分跟contours相关。 轮廓线就是一条连接所有边界点的曲线,其实也就是两点相连构成的list。 (部分翻译的外文blog)“The contours are a useful tool for shape analysis and object detection
基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条、轮廓、块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以及做一些简单的基础应用。 一、Canny检测轮廓 在 上一篇文章中有提到sobel边缘检测,并重写了soble的C++代码让其与matlab中算法效果一致,而soble边缘检测是基于单一阈值的,我们 不能兼顾到低阈值的丰富边缘
前言: 轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。1. cv2.arcLength()retval=cv.arcLength(curve, closed)参数解释; ① curve 轮廓周长 输入二维向量 可以为std::vector or Mat类型 ② closed 是否闭合 bool ture或者flase2. cv2.contourArea()cv2.c
Laplacian算子边缘检测的来源在边缘部分求取一阶导数,你会看到极值的出现: 如果在边缘部分求二阶导数会出现什么情况? 从上例中我们可以推论检测边缘可以通过定位梯度值大于邻域的相素的方法找到(或者推广到大 于一个阀值). 从以上分析中,我们推论二阶导数可以用来检测边缘 。 因为图像是 “2维”, 我们需要在两个方向求导。使用Laplacian算子将会使求导过程变得简单。Laplacian定义:
边缘检测,框出物体的轮廓(使用opencv-python)OpenCV 中的轮廓应用感兴趣区域的移动物体检测,框出移动物体的轮廓 (固定摄像头, opencv-python)OpenCV图像处理-轮廓和轮廓特征图像二值化做轮廓检测,必须先把图像二值化。而二值化主要考虑如何做到阈值自适应,尤其是局部阈值自适应OpenCV—图像二值化图像二值化,阈值处理(十)轮廓处理的一般流程:知识点1: 需要注意的
图像边缘检测之索贝尔算子、拉普拉斯算子、canny算子1.Sobel算子Sobel 算子又被叫做一阶微分算子,是一种差分近似微分的方法。其中根据核的不同又有水平和竖直梯度之分,对应着不同的卷积核。API如下:cv::Sobel (
InputArray Src // 输入图像
OutputArray dst// 输出图像,大小与输入图像一致
int depth // 输出图像深度.
Int dx.
第5章 边缘和轮廓5.1边缘检测5.1.1 Laplacian边缘检测5.1.2 Sobel边缘检测5.1.3 Canny边缘检测5.1.4 总结5.2 图像轮廓5.2.1查找轮廓5.2.2 绘制轮廓5.3 霍夫变换5.3.1霍夫直线变换5.3.2霍夫圆变换 5.1边缘检测图像的边缘是指图像中灰度值发生急剧变化的位置,边缘检测的目的是为了绘制出边缘线条。边缘通常是不连续的,不能表示整体。图像轮廓
# Python OpenCV边缘检测 让轮廓闭合
作为一名经验丰富的开发者,我将教会你如何在Python中使用OpenCV进行边缘检测并让轮廓闭合。本文将按照以下步骤进行操作:
1. 导入所需的库
2. 读取图像并进行灰度处理
3. 进行边缘检测
4. 对边缘进行闭合处理
5. 显示闭合后的轮廓
## 1. 导入所需的库
在开始之前,我们需要导入OpenCV库和NumPy库,用于图像处理
#来自学渣的问候~这个是我在用Python学OpenCV的时候,对一张图片进行边缘检测时,遇到的情况和解决的学习过程。 因为我在思考这个东西的时候,感觉这个学习的过程很有趣,所以在这里叙述一下,和大家分享。如有错误,请指正,感激不尽!第一次学Python,环境用的是anaconda。 边缘检测目前学了两种方法,一个是直接调用OpenCV的Canny函数,另一个是利用Sobel Lapalce 算子
文章目录Canny算子非极大值抑制非极大值抑制中的插值滞后阈值实际应用直接使用Canny算子使用膨胀先阈值分割 Canny算子上一篇说到,我在一个小项目里需要在一幅图像中提取一根试管里的两种液体的截面。为了达到这个目的使用传统图像里的区域分割技术,实际上就是想把这个图像分成两类,然后再找到这个两个类的边界。 上一张最后提到,我是使用一种拟合的方法来做的边界的判断,后来突然想到,opencv里面提
目录图像的分割图像分割的基本概念分水岭法GrabCutMeanShift图像分割视频前后景分离MOGMOG2GMG图片修复基本API交互式抠图 图像的分割图像分割的基本概念图像分割: 将前景物体从背景中分离出来.图像分割分为传统图像分割和基于深度学习的图像分割方法.传统图像分割就是使用OpenCV进行的图像分割.传统图像分割方法有:分水岭法GrabCut法MeanShift法背景扣除分水岭法分水
1.Canny边缘检测canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]]) 必要参数: 第一个参数image是需要处理的原图像,该图像须为单通道的灰度图; 第二个参数threshold1是阈值1; 第三个参数threshold1是阈值2; 其中较大的阈值2用于检测图像中明显的边缘,但一般
开发环境为:win10+QT5.8+opencv3.2 数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域十分重要的基再赘述。 ...
环境配置Pycharm直接pip install安装opencv-python或opencv-contrib-python,注意的是安装opencv-python-headless会导致imshow等涉及UI的方法不能用。
其中,opencv-python只包含了OpenCV的主要模块,而opencv-contrib-python还包含了一些拓展模块,两者都适用于桌面环境,而opencv-pyth
转载
2023-09-10 10:02:48
1284阅读
实验三 边缘检测算子一、 实验目的 利用opencv或其他工具编写实现下图的sobel算子和robert算子边缘检测二、 实验过程 利用opencv python实现sobel算子和robert算子边缘检测 (1)在python安装opencv库 这个步骤我在第二个实验,图像滤波里写过了,就不再重复了。 (2)编写代码 代码如下:import cv2
import numpy as np
im
什么是轮廓轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。为了准确,要使用二值化图像。需要进行阀值化处理或者Canny边界检测。查找轮廓的函数会修改原始图像。如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。在OpenCV中,查找轮廓就像在黑色背景中找白色物体。你应该记住,要找的物体应该是白色而背景应该是黑色。 如何
在图像中寻找轮廓 目标在这个教程中你将学到如何: 使用OpenCV函数 findContours
使用OpenCV函数 drawContours
原理 例程教程的代码在下面给出. 你也可以从 这里 下载 #include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc
目标了解轮廓是什么。学习查找轮廓,绘制轮廓等。
cv2.findContours(),cv2.drawContours()
什么是轮廓?轮廓可以简单地解释为连接具有相同颜色或强度的所有连续点(沿边界)的曲线。轮廓是用于形状分析以及对象检测和识别的有用工具。为了获得更高的准确性,请使用灰度图像。因此,在找到轮廓之前,请应用阈值或canny边缘检测从OpenCV 3.2开始,cv2.findConto
OpenCV 轮廓基本特征 分类: OpenCV(35)
一、概述 我们通过cvFindContours( )函数获取得图像轮廓有何作用呢?一般来说,我们对轮廓常用的操作有识别和处理,另外相关的还有多种对轮廓的处理,如简化或拟合轮廓,匹配轮廓到模板,等等。
目录前言:本篇学习内容:1.绘制图像轮廓参考文献: 前言:笔者目前在校本科大二,有志于进行计算机视觉、计算机图形学方向的研究,准备系统性地、扎实的学习一遍OpenCV的内容,故记录学习笔记,同时,由于笔者同时学习数据结构、机器学习等知识,会尽量根据自己的理解,指出OpenCV的应用,并在加上自己理解的前提下进行叙述。 若有不当之处,希望各位批评、指正。本篇学习内容:1.绘制图像轮廓1.绘制图像轮