对于刚入门的OpenCV玩家,提起目标跟踪,马上想起的就是camshift,但是camshift跟踪往往达不到我们的跟踪要求,包括稳定性和准确性。 opencv3.1版本发行后,集成了多个跟踪算法,即tracker,大部分都是近年VOT竞赛榜上有名的算法,虽然仍有缺陷存在,但效果还不错。 ps:我在知乎上看到一个目标跟踪的介绍,感觉不错,链接在此! 单目标跟踪很简单,放一个官方例程供参考(ope
转载 2024-03-12 15:45:39
110阅读
直接贴上代码,代码全部注释完成,需要学习的可以使用。代码有问题请留言。#include <opencv2/opencv.hpp>//opencv头文件 bool selectObject = false; //用于是否有选取目标 int trackObject = 0; // 1表示有追踪对象 0 表示无追踪对象 //-1表示追踪对象尚未计
转载 2024-02-10 20:50:35
55阅读
基于特征的跟踪是指跟踪视频中连续帧的各个特征,其优点是不必在每一帧中检测特征,可以只检测一次,之后继续跟踪它们。 采用一种称为光流的技术来跟踪这些特征,光流是计算机视觉中最流行的技术之一。该技术需要选择一组特征,并通过视频流跟踪它们。当检测到特征时,则计算位移向量并显示连续帧之间的关键的运动情况,这些向量称为运动向量。与前一帧相比,特定点的运动向量基本上只是指示该移动位置的方向线。 当
KCF: Kernelized correlation filterKCF是一种鉴别式追踪方法,这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置是否是目标,然后再使用新检测结果去更新训练集进而更新目标检测器。而在训练目标检测器时一般选取目标区域为正样本,目标的周围区域为负样本,当然越靠近目标的区域为正样本的可能性越大。论文:High-Speed Tracking
转载 2024-04-29 22:03:59
284阅读
这一节应该是本项目(Feature Tracking and Synchronous Scene Generation with a Single Camera)的最后一节了,实现了两种选取跟踪和恢复跟踪的方法,顺便把AR物体换成了AR小游戏。首先讲讲跟踪的选取。之前的文章中我们选取ORB作为特征点检测的办法,然后手动选取N个ORB角去利用LK光流法跟踪。这样的方法是事先定义好3D的位置,
转载 2024-02-04 15:38:57
59阅读
文章目录一、黑白图片二、HSV颜色空间三、OpenCV中的HSV1. HSV二值化处理的函数:2. HSV颜色范围的选取:四、颜色直方图的获取与目标跟踪1. 颜色直方图的获取2.基于颜色直方图的目标跟踪五、camshift算法原理1. 色彩投影图(反向投影):2. meanshift3. camshift算法过程4. OpenCV中相关API1. 直方图2. CamShift函数六、基于颜色特征
      前面一篇文章中提到,我们在一副脸部图像上选取76个特征,以及这些特征的连通性信息来描述脸部形状特征,本文中我们会把这些特征映射到一个标准形状模型。      通常,脸部形状特征能够参数化分解为两个变量,一个是全局的刚体变化,一个是局部的变形。全局的刚体变化主要是指脸部能够在图像中
转载 2023-12-08 21:36:12
78阅读
1. CamShift思想               Camshift全称是"Continuously Adaptive Mean-SHIFT",即连续自适应的MeanShift算法,是MeanShift算法的改进。CamShift的基本思想是视频图像的所有帧作MeanShift运算,并
转载 2024-05-09 16:11:21
504阅读
在前面的报告中我们实现了用SURF算法计算目标在移动摄像机拍摄到的视频中的位置。由于摄像机本身像素的限制,加之算法处理时间会随着图像质量的提高而提高,实际实验发现在背景复杂的情况下,结果偏差可能会很大。本次改进是预备在原先检测到的特征上加上某种限制条件,以提高准确率。问题:如何判定检测到的特征是否是我们需要的(也就是目标区域上的)?可行方案:用形态学找出目标的大致区域,然后对特征判定。特
转载 2024-03-01 15:21:48
101阅读
前言:最近在看跟踪算法,看了下比较久远的meanshift、Lk光流算法等,感觉效果和速度都不是很满意。直到我看了KCF跟踪算法,这个算法速度快,效果好,具有很强的鲁棒性,思路清晰。此外作者在主页上给出了matlab和c的代码,可以更好的理解算法。本来我打算叙述一下算法的原理,但是因为网上已经有了很好的博客对KCF进行了详细的介绍,对论文原理进行了推导,所以我打算从另一个方面去看算法——从代码上看
一、简介         本文章的起源是本人在做一个项目,用摄像头识别笔,根据笔的运动,绘制出其轨迹。主要应用到的方法,有运动物体识别、运动物体检测,以及绘制运动物体的运动轨迹。1、 运动物体的识别方法很多,主要就是要提取相关物体的特征,主要分为:     &
知识要点1. OpenCV目标跟踪算法的使用大概可以分为以下几个步骤:创建MultiTracker对象:  trackers = cv2.legacy.MultiTracker_create()读取视频或摄像头数据:  cap = cv2.VideoCapture('./videos/soccer_02.mp4')框选ROI区域:  roi = cv2.selectR
OpenCV+海康威视摄像头的实时读取 标签: opencv
转载 2023-08-14 20:25:34
263阅读
目标跟踪指的是对视频中的移动目标进行定位的过程。在如今AI行业有着很多应用场景,比如监控,辅助驾驶等。对于如何实现视频的目标跟踪,也有着许多方法。比如跟踪所有移动目标时,视频每帧之间的变化就显得很有用。如若视频背景不变,即可利用背景变化实现目标跟踪。还有之前我们实现过的「跳一跳」小游戏。其中的模板匹配,也是一种目标跟踪方法,能够很好的跟踪到小跳人的位置。接下来看一下一些简单的目标跟踪案例。/ 01
原创 2020-12-24 16:03:07
1487阅读
目标跟踪指的是对视频中的移动目标进行定位的过程。在如今AI行业有着很多应用场景,比如监控,辅助驾驶等。对于如何实现视频的目标跟踪,也有着许多方法。比如跟踪所有移动目标时,视频每帧之间的变化就显得很有用。如若视频背景不变,即可利用背景变化实现目标跟踪。还有之前我们实现过的「跳一跳」小游戏。其中的模板匹配,也是一种目标跟踪方法,能够很好的跟踪到小跳人的位置。接下来看一下一些简单的目标跟踪案例。/ 01
原创 2021-01-19 14:15:17
1537阅读
1点赞
# 使用 OpenCV 在 Android 中进行物体跟踪 在现代计算机视觉领域,物体跟踪是一个重要的研究方向,广泛应用于安全监控、智能交通、增强现实等场景。本文将介绍如何在 Android 开发环境中使用 OpenCV 实现物体跟踪,并提供代码示例以及一些重要的实用信息。 ## 1. 什么是 OpenCVOpenCV(Open Source Computer Vision Librar
原创 7月前
45阅读
前言 CamShift算法,全称是 Continuously AdaptiveMeanShift,顾名思义,它是对Mean Shift 算法的改进,能够自动调节搜索窗口大小来适应目标的大小,可以跟踪视频中尺寸变化的目标。它也是一种半自动跟踪算法,需要手动标定跟踪目标。CamShift基本思想是以视频图像中运动物体的颜色信息作为特征,对输入图像的每一帧分别作 Mean-Shift 运算,并
目录 目录前言跟踪算法OpenCV30提供的跟踪APIopencv32vs2013opencv_contrib32opencv32和opencv_contrib32源码下载cmake编译opencv320总结参考链接下载地址 前言前面一直使用camshift做跟踪,但是camshift实际使用的效果并不怎么好。随着对OpenCV稍微了解了一之后,看到这篇博客[同时看到这篇博客自适应三特征融合之
本文将展示如何使用 OpenCV 中的一些基本功能来执行复杂的对象跟踪任务OpenCV 是一个很好的处理图像和视
原创 2024-08-07 15:13:11
96阅读
今天周六,我要做一个上进的妈妈,所以学习了这篇深度好文,开始翻译~~~ 先把英文原版放出来,英文好的可以自行阅读    http://www.learnopencv.com/object-tracking-using-opencv-cpp-python/?winzoom=1  我们将学习如何以及何时使用OpenCV 3.2中提供的6种不同的跟踪器-BOOSTING,
  • 1
  • 2
  • 3
  • 4
  • 5