爆炸式增长的数据如何处理?60秒的时间内可以做那些事呢?打字员可以打80个字,YouTube的用户可上传长达72小时的视频……言归正传,60秒,也就是一分钟内在互联网上到底发生了什么事呢?在一分钟内,邮箱用户总共发送了2.04亿封邮件,亚马逊官网上的销售额约达到了8.3万美元,再说说社交网络上,Facebook的用户约推送了246万条的内容,Twitter用户发推数量约为27.7万条……在这组数字
在当今高并发、大数据的时代,系统性能优化是非常重要的。而缓存优化作为提高系统性能的一种有效手段,被广泛应用于各种场景中。其中,冷热分离和重排序是常见的两种缓存优化方式。本篇博客将详细介绍这两种优化方式的原理、实现和应用场景,希望能为您的系统性能优化提供帮助。缓存优化是提高系统性能的一种有效手段,其中冷热分离和重排序是常见的两种优化方式。缓存优化冷热分离缓存的命中率受多种因素影响,其中最重要的
转载 2024-04-24 14:16:39
74阅读
数据库调优的措施1.选择合适的存储引擎,比如对于mysql来说,如果进行事务处理的话可以选择lnnoDB,非事务处理可以选择MylSAM2.优化表的结构3.优化逻辑查询,比如子查询会生成一个临时表,可以用连接查询代替子查询4.优化索引5.使用 Redis 或 Memcached 作为缓存6.读写分离等等7.优化数据库的结构 如何优化数据库的结构 1.拆分表:冷热数据分离把1个包
冷热分离一直是数据库和存储领域离不开的话题,特别是大数据的年代,数量和存储成本的矛盾需要冷热分离来解决。对于生产系统,不同数据库的特点不同,冷热分离机制和算法也不同。本篇文章讲一下内存数据库的冷热分离。内存数据库最显著的特点是吞吐高、延迟低,但是内存数据库往往会对接一个外部存储,比如Redis的外存版本。这样就要求冷热分离算法的cost必须很低,才不会影响内存数据库的性能,或者说把影响降到最低。传
MySQL主从复制技术与读写分离技术amoeba应用前言:眼下在搭建一个人才站点,估计流量会非常大,须要用到分布式数据库技术,MySQL的主从复制+读写分离技术。读写分离技术有官方的MySQL-proxy,阿里巴巴的Amoeba。Amoeba能在阿里巴巴这么大流量的平台投入使用并且执行稳定,Amoeba的性能是非常优越的。相信眼前事实,所以选择了Amoeba。一、名词解析1. 主从复制。
相一、实验效果实现两台服务器主从复制二、准备工作两台虚拟机,10.0.0.10(主),10.0.0.100(从),且安装mysql,我以mysql5.47为例子(不会安装可以看我前面的博客),两者都创建了一个名为msb的数据库。...mysqlcreate database msb;三、实例配置1、更改主服务器my.cnf配置文件...shellvi /etc/my.cnf#在mysqld模块中添
目录一.冷热分离概念:二.解决方案:三.具体实现思路:四.难点:        业务背景:系统在使用的过程中随着业务数据量越来越多,已经超过了数据库中单表的承受能力,系统的瓶颈在数据库IO上,这时候可以通过冷热数据分离的方式来解决查询速度慢的问题。      
转载 2023-10-28 13:37:24
257阅读
 web产品最重要的核心单元无疑是数据,而主流的存储容器则是Mysql,对于快速增长的数据,其性能可能会呈指数级的递减,为解决该问题,主流的做法基本是水平和垂直拆分,根据数据的特性将数据进行库和表级的拆分,实际上的理论还是数据分割,但是终有一天你会发现单表的数据还是越来越大,也许你可以说我再拆分,可拆分的代价可能就是部署多次方的辅库.存储容量可能会让你很吃惊,而且这样的做法有没有人真正去
1.前提这次数据库的冷热分离算是第二次做了 其实之前已经做过一次冷热分离了,涉及到数据库复制时,当时是趋近于业务的(后面会详细讲),整体来讲不是很好用,这次算是重构了吧 做的最终结果还是和前一次一样: 数据库中的订单数据,是每时每刻都在增加 我们认为3个月以内的数据,用户会频繁的操作,称为热数据 3个月以前的数据,基本上不会有修改的地方了,查询也是很少量的,我们称为冷数据 所以将现有数据库称之为生
查询分离适用场景:1.数据量大 2.所有数据都需要写 3.无法分离冷热数据 4.即使是冷数据,依然要读写保持更新因此没法冷热分离查询分离从三个方式去建设:1)同步建立2)异步建立3)binlog方式  1)同步建立:  优点:可以一定程度上保证主从数据的一致性,可以从库容灾。(也可以MQ建立) 缺点:更新数据的时候要等待从库备份回应,数据更改的效率
    在某些应用场景中,随着时间的流逝,历史数据很少被访问,主要是访问新产生的数据。这种情况下会把很少访问的数据存储到IO比较慢的存储设备上,而把长期查询的数据存放到IO比较快的存储设备上面。比如,像网上交易系统,可以把几个月前的历史数据存放到机械硬盘上面,而把当月的数据存放到固态硬盘上面。从而让成本最优的情况下,提升用户体验。     pgo
背景随着财经支付业务的快速发展,考虑到未来订单量持续增长,在线存储遇到更大的挑战,需提前做好规划。目前财经支付主要业务都是使用 mysql(InnoDB)作为数据存储,因历史订单信息访问频率低并占用了大量数据库存储空间,期望将历史数据跟生产最新交易数据进行分离,当前数据库保留最近一段时间的数据作为热库,历史交易存入另一个数据库压缩存储作为冷库(rocksdb),即数据冷热分离。此举将会极大的节省
转载 2023-11-03 17:53:03
182阅读
数据冷热分离数据的存在价值,在于其被使用的程度,即被查询或更新的频率。在不同的业务系统中,人们对处于不同时期的数据有着不同的使用需求。比如,在网络流量行为分析系统中,客户会对最近一个月公司发生的安全事件和网络访问情况感兴趣,而很少关注几个月前的数据;在电商订单系统中,用户会经常访问最近三个月的订单,而更久远的数据则几乎不会去关注。针对这样一些业务场景,我们将数据按照时间纬度划分为二个阶段:Hot、
参加 Hackathon 可以接触到内核、工具、生态各个领域中志同道合的小伙伴,通过他们的项目学习到非常好的创意。大家的想法都很奇妙,充满了创新力,在平时的研发过程中,很少能接触到这些,Hackathon 能够帮助我们打开思维,让我们知道原来 TiDB 还可以这么玩。—— He3 团队TiDB 在使用过程中,随着用户数据量的持续增长,存储成本在数据库总成本中的占比将会越来越高。如何有效降低数据库存
分库:1、数据库分库而不是分表,分表需要考虑后期的查询问题,此外还需要注意分表的算法(哈希算法)。2、热数据只占全部数据的一部分,因此每次优先查询热库,以下情况才查询冷库   -  当查询条件未命中(结果集为空)时,查询冷库。    -  当查询条件部分命中时,查询冷库。3、为了区分部分命中和全部命中,可以在热库中建一张R表存放
转载 2023-09-22 21:04:19
249阅读
业务场景有一个系统的主要功能是这样的:它会对接客户的邮件服务器,自动收取发到几个特定客服邮箱的邮件,每收到一封客服邮件,就自动生成一个工单。之后系统就会根据一些规则将工单分派给不同的客服专员处理。这家媒体集团客户两年多产生了近2000万的工单,工单的操作记录近1亿。平时客服在工单页面操作时,打开或者刷新工单列表需要10秒钟左右。要求进行优化: 当时的数据情况如下: 1)工单表已经达到3000万条数
1. 对于预读机制以及全表扫描加载进来的一大堆缓存页在经过优化的LRU链表方案下,预读机制以及全表扫描加载进来的一大堆缓存页,都会被放在LRU链表的冷数据区域的前面。假设这个时候热数据区域已经有很多被频繁访问的缓存页了,就会发现热数据区域还是存放被频繁访问的缓存页的,只要热数据区域有缓存页被访问,它还是会被移动到热数据区域的链表头部去。而预读机制和全表扫描加载进来的一大堆缓存页,此时都在冷数据区域
转载 2023-11-27 16:46:53
94阅读
## 冷热数据分离 MySQL 的实现指南 在数据库系统中,冷热数据分离是一种通过将频繁访问的数据(热数据)和不常访问的数据(冷数据)放置于不同的存储层级,来提高系统性能和可维护性的策略。本文将指导你如何在 MySQL 中实现冷热数据分离,流程如下: | 步骤 | 操作 | |------|------| | 1 | 设计数据库结构 | | 2 | 定义热数据与冷数据 | | 3
原创 8月前
52阅读
# 实现 MySQL 冷热数据分离的指南 冷热数据分离是一个常见的数据库优化策略,旨在提高系统的性能与维护性。通过将频繁访问的数据(热数据)与不常访问的数据(冷数据)分开存储,可以在提高查询效率的同时降低存储成本。本文将详细介绍如何实现 MySQL冷热数据分离。 ## 流程总览 在实现冷热数据分离的过程中,我们通常可以按照以下步骤进行: | 步骤 | 描述
原创 9月前
239阅读
01 Elasticsearch 广泛使用带来的成本问题Elasticsearch(下文简称“ES”)是一个分布式的搜索引擎,还可作为分布式数据库来使用,常用于日志处理、分析和搜索等场景;在运维排障层面,ES 组成的 ELK(Elasticsearch+ Logstash+ Kibana)解决方案,简单易用、响应速度快,并且提供了丰富的报表;高可用方面, ES 提供了分布式和横向扩展;数据层面,支
  • 1
  • 2
  • 3
  • 4
  • 5