一、MapReduce已死,Spark称霸 《Spark亚太研究院系列丛书——Spark实战高手之路 从零开始》本书通过Spark的shell测试Spark的工作;使用Spark的cache机制观察一下效率的提升构建Spark的IDE开发环境;通过Spark的IDE搭建Spark开发环境;测试Spark IDE开发环境等等。本节为大家介绍MapReduce已死,Spark称霸。
1. 使用jieba对中文进行分词、去停用词ChnSentiCorp_htl_all数据集下载自:https://github.com/SophonPlus/ChineseNlpCorpus/blob/master/datasets/ChnSentiCorp_htl_all/intro.ipynb 这个数据集有7000 多条酒店评论数据,5000 多条正向评论,2000 多条负向评论。数据大概长下
转载
2024-03-14 12:22:43
122阅读
常用的查询过滤语句 (1)term 过滤:主要用于精确匹配,比如数字,日期,布尔值或 not_analyzed的字符串(未经分析的文本数据类型):DEMO1: { “term”: { “age”: 26 }} DEMO2: { “term”: { “date”: “2014-09-01” }} DEMO3: { “term”: { “public”: true }} DEMO4:
文章目录返回主目录过滤停用词(Filtering stop words)Stemming操作 过滤停用词(Filtering stop words)对于NLP的应用,在处理阶段会把一些无关紧要的词去掉,也就是所谓的停用词在英文里,比如“the”,“a”,“an”等单词或“$”,“%”,“&”等标点符号,都可以作为停用词来处理在中文里,比如“啊”,“一则”,“不尽然”等词汇或“『”,“▲”
转载
2024-03-09 20:12:42
86阅读
我正在尝试从文本字符串中删除停用词:from nltk.corpus import stopwords
text = 'hello bye the the hi'
text = ' '.join([word for word in text.split() if word not in (stopwords.words('english'))])我正在处理600万这种字符串,因此速度很重要。 分析
转载
2024-04-29 10:08:42
154阅读
使用如下代码:import jieba
def get_stop_words(filepath) -> list:
return open(filepath, 'r', encoding='utf-8').readlines()[0].split(',')
# 对句子进行分词
def seg_sentence(sentence, stop_words):
senten
转载
2023-08-04 12:39:45
70阅读
停用词主要是为了提升性能与精度。从早期的信息检索到如今,我们已习惯于磁盘空间和内存被限制为很小一部分,所以 必须使你的索引尽可能小。 每个字节都意味着巨大的性能提升。 词干提取的重要性不仅是因为它让搜索的内容更广泛、让检索的能力更深入,还因为它是压缩索引空间的工具。一种最简单的减少索引大小的方法就是 _索引更少的词_。 有些词要比其他词更重要,只索引那些更重要的词来可以大大减少索引的空间。那么哪些
转载
2024-01-03 12:54:15
76阅读
# R语言过滤停用词教程
## 目录
1. 简介
2. 停用词的概念
3. 过滤停用词的步骤
4. 代码示例
5. 总结
## 1. 简介
在R语言中,过滤停用词是文本处理的重要步骤之一。停用词指的是那些在文本分析中无需考虑的常见词汇,如“的”、“是”、“我”等。过滤停用词可以提高文本分析的准确性和效率。
在本教程中,我将介绍如何使用R语言过滤停用词,帮助你更好地理解并掌握这一重要技巧。
原创
2024-01-26 07:45:41
357阅读
# Python词云项目方案:如何过滤停用词
## 项目背景
词云是一种用来直观展示文本数据中词频的信息图形表现形式。通过强调某些词语,词云可以有效地传达主题和关键概念。然而,在生成词云的过程中,由于许多停用词(如“的”、“是”等)对主题的分析并无帮助,反而会造成词云的失真。因此,本文将介绍如何在Python中使用词云库并有效过滤这些停用词。
## 需求分析
在本项目中,我们的目标是:
一.HanLP开源框架HanLP是Hankcs主持并开源的一系列模型和算法组成的工具包,具有功能完善、性能高效、架构清晰、语料时新、可自定义词库等特点,提供词法分析、句法分析、文本分析和情感分析等功能,已被广泛的应用在工业、科研、教育等领域中。不同于一些简陋的分词类库,HanLP精心优化了内部数据结构和IO接口,做到了毫秒级的冷启动、千万字符每秒的处理速度,而内存最低仅需120MB。无论是移动设备
转载
2023-12-06 19:06:41
65阅读
一、jieba三种分词模式(一)概述 jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法找到最大概率的词组;除此之外,jieba 库还提供了增加自定义中文单词的功能。支持三种分词模式1、精确模式,试图将句子最精确地切开,适合文本分析; &nbs
转载
2024-05-31 12:45:58
98阅读
2.7 停用词移除停用词移除(Stop word removal)是在不同的NLP应用中最常会用到的预处理步骤之一。该步骤的思路就是想要简单地移除语料库中的在所有文档中都会出现的单词。通常情况下,冠词和代词都会被列为停用词。这些单词在一些NPL任务(如说关于信息的检索和分类的任务)中是毫无意义的,这意味着这些单词通常不会产生很大的歧义。恰恰相反的是,在某些NPL应用中,停用词被移除之后所产生的影响
转载
2023-11-30 13:17:47
218阅读
简单描述程序功能:python+flask
1.停用词为csv文件
2.源文件为txt文件
转载
2023-05-29 23:23:15
162阅读
import nltk ##conda install nltk 具体记不清了,需要点击弹窗左侧的stopwords,然后点击右下角的download
from nltk.corpus import stopwords
stopwords = stopwords.words("english")
print(stopwords)##停用词,无太大价值,意义不大的词语 import nltk
f
转载
2023-06-30 21:58:56
560阅读
前言这一篇就来记录一下读取文本文件并使用Jieba包进行分词,存储结果用于后续处理的一些简单操作~分词并存储话不多说,简单步骤就是构建好自己的词典和停用词列表,然后读取 分词 删除 存储import jieba
import pandas as pd
def read_file(filename):
"""读取文本数据,删除停用词 将文本及其对应的故障类型存储为列表"""
cont
转载
2023-08-08 16:07:58
118阅读
# Python中的停用词处理指南
在自然语言处理(NLP)中,停用词(Stop Words)是指在文本中出现频率很高但对文本分析帮助不大的单词,如“的”、“是”、“在”、“和”等。在实际处理文本数据时通常会将这些词汇去除,以提高模型的效果。
本文将指导你如何使用Python处理停用词,并提供清晰的步骤说明和相关代码示例。
## 流程概述
首先,让我们概述实现停用词处理的步骤。我们将整个过
家中小孩玩电脑游戏,自己拿了iPad,随便输入密码,结果造成平板电脑无法使用,随后显示过一分钟后再试,一分钟后重新输入,却显示十五分后再试,直到后来显示已停用。在手机或是平板电脑上输入错误密码6次之后,这些装置将自动锁上并暂时停用,当这个情况发生后,该如何处理呢?第一种方法:准备好大洋拿去给修手机的开锁,这种方法适用于怕自己把平板电脑或手机搞成砖头的小伙伴们。第二种方法:动手能力较强的可以在电脑装
转载
2023-12-07 07:30:44
67阅读
Java Springbool敏感词过工具类滤1. 功能描述利用前缀树这种数据结构,设计并开发出敏感词过滤工具。2. 构建敏感词表resource/sensitive-words.txt3. 敏感词过滤器util/SensitiveUtil.java构建前缀树定义过滤方法package com.wlnl.lanaer.service.api.util;
import lombok.extern.
转载
2023-11-29 14:21:07
149阅读
源码下载的地址:https://github.com/fxsjy/jieba演示地址:http://jiebademo.ap01.aws.af.cm/特点1,支持三种分词模式: a,精确模式,试图将句子最精确地切开,适合文本分析; b,全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; &
# 使用HanLP实现停用词过滤的指南
随着自然语言处理(NLP)技术的发展,停用词过滤成为文本预处理中的重要步骤。今天,我们将通过HanLP这个强大的工具来了解如何实现停用词过滤。本文将详细介绍整个流程,并逐步为你展示所需的代码。
## 流程概述
以下是实现HanLP停用词过滤的主要步骤:
| 步骤 | 描述 |
|------|------|
| 1 | 安装HanLP库 |
|