关于什么是 LSTM 我就不详细阐述了,吴恩达老师视频课里面讲的很好,我大概记录了课上的内容在吴恩达《序列模型》笔记一,网上也有很多写的好的解释多的问题,网上大部分的博客都没有讲清楚 cell 参数的设置,在我看了N多篇文章后终于搞明白了,写出来让大家少走一些弯路吧! 如上图是一个LSTM的单元,可以应用到多种RNN结构中,常用的应该是 one-to-many 和 many-to-many 下面介
转载
2024-03-26 11:17:54
66阅读
在深度学习中,循环神经网络(RNN)是一系列善于从序列数据中学习的神经网络。由于对长期依赖问题的鲁棒性,长短期记忆(LSTM)是一类已经有实际应用的循环神经网络。现在已有大量关于 LSTM 的文章和文献,其中推荐如下两篇:Goodfellow et.al.《深度学习》一书第十章:http://www.deeplearningbook.org/Chris Olah:理解 LSTM:http://co
转载
2024-08-08 23:36:14
13阅读
1.LSTM的语言模型简介 LSTM(Long Short Term Memory),用来处理有时序联系的信息效果非常明显,在很多情况下,卷积神经网络虽然处理图片增加了其空间特征的联系,但是对于图片与图片之间的联系性并不是很强,所以对于视频或者是自然语言处理前后的关联性并不是很好。 对于一些简单的问题,可能只需要最后输入的少量时序信息即可解决问题。但对于复杂问题,可能需要更早的一些信息,甚至是
转载
2024-04-15 15:52:19
8阅读
1.tf.Graph()你一旦开始你的任务,就已经有一个默认的图已经创建好了。而且可以通过调用tf.get_default_graph()来访问到。 添加一个操作到默认的图里面,只要简单的调用一个定义了新操作的函数就行。比如下面的例子展示的: import tensorflow as tf
import numpy as np
c=tf.constant(value=1)
print
转载
2024-04-02 11:03:08
54阅读
之前讲过了tensorflow中CNN的示例代码,现在我们来看RNN的代码。不过好像官方只给了LSTM的代码。那么我们就来看LSTM吧。LSTM的具体原理就不讲了,可以参见深度学习笔记(五):LSTM,讲的非常清楚。坦白说,这份写LSTM的代码有点难,倒不是说LSTM的原理有多难,而是这份代码中使用了大量tf提供的现成的操作函数。在精简了代码的同时,也增加了初学者阅读的难度。很多函数的用法我是去看
这里我们解释一下tf.nn.rnn_cell.BasicLSTMCell(), tf.nn.dynamic_rnn()的用法。1 tf.nn.rnn_cell.BasicLSTMCell()__init__(
num_units,
forget_bias=1.0,
state_is_tuple=True,
activation=None,
reuse=Non
1.tf.Graph()你一旦开始你的任务,就已经有一个默认的图已经创建好了。而且可以通过调用tf.get_default_graph()来访问到。 添加一个操作到默认的图里面,只要简单的调用一个定义了新操作的函数就行。比如下面的例子展示的:import tensorflow as tf
import numpy as np
c=tf.constant(value=1)
print(c
转载
2023-10-13 15:13:40
89阅读
TensorFlow C++ Session API reference documentationTensorFlow’s public C++ API includes only the API for executing graphs, as of version 0.5. To control the execution of a graph from C++: TensorFlow的C+
转载
2024-05-07 09:24:50
87阅读
一 摘要 2015年11月9日,Google发布深度学习框架Tensorflow并宣布开源,迅速得到广泛的关注,在【图像分类】、【音频处理】、【推荐系统】和【自然语言处理】等场景下大面积被推广。Tensorflow系统更新的速度非常之快,官方文档的教程也比较齐全,上手快速,简单易用,支持Python和C++接口。本文依据对Tensorflow(简称
转载
2024-04-24 12:09:31
47阅读
lstm实现困惑度困惑度是什么具体实现数据准备vocabWord2idbatch_data模型的配置 困惑度是什么通常在永ngram语言模型的时候,通常用困惑度来描述这个query的通顺程序,ngram是一个统计概率模型。 但是ngram模型有一个缺点,就是通常我们使用的是2-gram或者3-gram,那么对于大于3个字或词以上的信息就不能捕获到了,但是循环神经网络可以将任意长度的信息都捕获到,
转载
2024-05-28 19:31:19
46阅读
LSTM是由每个cell组成的,每个cell里有3个门:输入门、遗忘门、输出门;每个cell有4个前馈网络层,其实就是4个激活函数,分别是σ、σ、tanh、σ;这些前馈网络层里有神经元,即隐藏神经元,每个前馈网络层里的隐藏神经元个数都是相同的,即num_units,也写作hidden_size每个ht的向量维度即为hidden_size当前时刻t的输入是xt,xt的维度是input_size,或i
转载
2024-04-02 10:59:53
48阅读
WaveNet 是生成原始音频波形的深层生成模型。这项突破性的技术已经被 Google DeepMind 引入(https://deepmind.com/blog/generate-mode-raw-audio/),用于教授如何与计算机对话。结果确实令人惊讶,在网上你可以找到合成声音的例子,电脑学习如何用名人的声音与人们谈话。 所以,你可能想知道为什么学习合成音频是如此困难。听到的每个数
循环神经网络介绍可以在 this great article 查看循环神经网络(RNN)以及 LSTM 的介绍。语言模型此教程将展示如何在高难度的语言模型中训练循环神经网络。该问题的目标是获得一个能确定语句概率的概率模型。为了做到这一点,通过之前已经给出的词语来预测后面的词语。我们将使用 PTB(Penn Tree Bank) 数据集,这是一种常用来衡量模型的基准,同时它比较小而且训练起来相对快速
翻译
2023-08-03 22:33:16
94阅读
最近在做可以转成pb模型的RNN/LSTM层的实现细节分析。经过一些分析,发现了在Keras里面常见的keras.layers.LSTM和Tensorflow的tf.contrib.rnn.LSTMCell有一些实现上面的区别。本文将立足于Keras和Tensorflow源码,分别搭建两个简单的一层LSTM的神经网络,验证权重的解析顺序及计算逻辑的正确性。Let’s roll~0. 常见的LSTM
转载
2024-03-26 11:16:06
159阅读
TensorFlow 2 中文文档 - RNN LSTM 文本分类TF2.0 TensorFlow 2 / 2.0 中文文档:RNN LSTM 文本分类 Text classification with an RNN主要内容:使用循环神经网络(Recurrent Neural Network, RNN) 分类 影评数据 IMDB循环神经网络(Recurrent Neural Network, RN
转载
2024-08-09 00:01:36
57阅读
tensorflow笔记:多层LSTM代码分析
标签(空格分隔): tensorflow笔记
tensorflow笔记系列:
(一) tensorflow笔记:流程,概念和简单代码注释
(二) tensorflow笔记:多层CNN代码分析
(三) tensorflow笔记:多层LSTM代码分析
(四) tensorflow笔记:常用函数说明
(五) tensorflow笔记:模型
转载
2017-11-27 14:56:00
379阅读
2评论
def my_lstm_layer(input_reps, lstm_dim=int(768 / 2), input_lengths=None, scope_name="my_rnn", reuse=False, is_
原创
2022-07-19 11:40:11
214阅读
LSTM(长短时记忆网络)是一种深度学习算法,经常用于时间序列预测任务。例如,预测未来几天的气温、股票价格、销售额等信息。动态预测是指在预测过程中,根据已经得到的输入和输出动态更新模型。下面,我们将一步步探索如何用 Python 和 TensorFlow 来实现 LSTM 的动态预测。
### 背景描述
在数据科学和人工智能的领域,动态预测是一个不可或缺的环节。尤其在时间序列预测中,基于历史数
这里不介绍RNN与RNN的特殊情形LSTM,因为内容过多。一、相关函数介绍 1、创建Cell:tf.nn.rnn_cell.BasicRNNCell(num_units)num_units:创建的神经元个数。 2、创建由 RNNCellcell指定的递归神经网络,执行inputs的完全动态展开(即对单个Cell执行动态展开):tf.nn.dynamic_rnn( cell, i
转载
2024-03-20 20:00:51
140阅读
目录1 短时记忆2 LSTM与基础的RNN对比3 门控4 输入门和遗忘门的典型行为5 LSTM层的使用1 短时记忆在处理较长的句子时,循环神经网络往往只能理解有限长度内的信息,而对于较长范围内的有用信息往往不能很好的利用起来。那么,能不能延长短时记忆,提高记忆力呢?——LSTM2 LSTM与基础的RNN对比与基础的RNN对比,除了有一个状态向量ht,LSTM新增加了一个状态向量
转载
2024-03-21 14:36:06
92阅读