冷热数据分离当前场景:gamserver启动时,会将所有数据加载到内存中,提高读取数据的性能。但是有很多数据很可能是不常用甚至再也用不到的数据,将这些数据加载到内存中需要占用更多的内存,极大的浪费了内存的使用。目标:对冷热数据进行分离,减少非必要数据对内存的占用,节约内存资源。主要工作:数据监控冷热数据识别数据迁移1.数据监控:监控与统计数据的使用,为冷热数据识别服务监控数据读取的命中率和数据存储
本文依据《从程序员到架构师》阅读有感,记录书中案例并且结合作者工作经历进行分析。当数据量过大,业务查询慢甚至导致数据库服务器CPU飙升,导致数据库宕机,影响用户体验。场景:      1.客户两年多产生了近2000万的工单,工单的操作记录近1亿      2.工单表已经达到3000万条数据。 &nb
冷热分离架构介绍冷热分离是目前ES非常火的一个架构,它充分的利用的集群机器的优劣来实现资源的调度分配。ES集群的索引写入及查询速度主要依赖于磁盘的IO速度,冷热数据分离的关键点为使用固态磁盘存储数据。若全部使用固态,成本过高,且存放冷数据较为浪费,因而使用普通机械磁盘与固态磁盘混搭,可做到资源充分利用,性能大幅提升的目标。因此我们可以将实时数据(5天内)存储到热节点中,历史数据(5天前)的存储到冷
常用命令:set/get/decr/incr/mget等;应用场景:String是最常用的一种数据类型,普通的key/value存储都可以归为此类;实现方式:String在redis内部存储默认就是一个字符串,被redisObject所引用,当遇到incr、decr等操作时会转成数值型进行计算,此时redisObject的encoding字段为int。2)Hash常用命令:hget/hset/hg
系列文章:数据架构:概念与冷热分离公众号:程序员架构进阶一 概述上一篇文章数据架构
MySQL 主从,读写分离为什么要配置主从通过增加从服务器来提高数据库的性能,主服务器提供写入和更新,从服务器提供读取提高数据安全,因为数据已复制到从服务器,从服务器可以终止复制进程,所以,可以在从服务器上备份而不破坏主服务器相应数据提高主服务器的性能,在主服务器生成实时数据,从服务器分析数据热备份冷备份热备份针对归档模式的数据库,在数据库仍旧处于工作状态时进行备份。 冷备份指在数据库关闭后,进行
一 什么是数据架构关于架构,大家都有了解和理解。通常一个业务或项目,在做架构设计时
clikhouse冷热数据分层方案 文章目录clikhouse冷热数据分层方案简介一、配置更改二、实际测试三、数据过期方案 简介 TTL策略可以结合业务特点,将数据生命周期与冷热数据存储关联起来。实现既保存历史数据,又能够降低存储成本的效果。比如将最近90天的高频查询数据放置在热数据存储中,而90天之前的低频查询数据自动转移到冷数据存储中一、配置更改在 config.xml 中加入如下配置 注意:
转载 2024-04-22 11:43:05
64阅读
# ES 冷热架构的科普详解 在现代软件架构中,尤其是大数据处理和实时数据分析中,冷热架构(Hot-Warm Architecture)是一种非常常见的设计理念。冷热架构通常用于优化数据存储和访问性能,使得系统在处理不同类型的数据时能够更为高效。本文将围绕 Elasticsearch(以下简称 ES) 工具的冷热架构展开分析,并且提供相关代码示例加深理解。 ## 1. 什么是冷热架构冷热
原创 7月前
36阅读
目录数据冷热分离方案1、简介1.1、什么是冷热分离1.2、什么情况下要使用冷热分离1.3、冷热分离实现思路:冷热数据都用MySQL。1.3.1、如何判断一个数据是冷数据还是热数据?1.3.2、如何触发冷热数据分离?方案一方案二方案三1.3.3、如何分离冷热数据?问题一、如何保证数据的一致性?问题二、数据量很大,一次处理不完?问题三、并发性。1.3.4、如何使用冷热数据?1.3.5、历史数据处理。
转载 2023-10-26 23:57:20
196阅读
目录一.冷热分离概念:二.解决方案:三.具体实现思路:四.难点:        业务背景:系统在使用的过程中随着业务数据量越来越多,已经超过了数据库中单表的承受能力,系统的瓶颈在数据库IO上,这时候可以通过冷热数据分离的方式来解决查询速度慢的问题。      
转载 2023-10-28 13:37:24
257阅读
一、冷热LRU链表引入我们知道MySQL是将数据存放在磁盘上的并且以页的形式来管理这些磁盘上的数据。磁盘的读写涉及到很多io操作,所以磁盘的访问是一个很慢的操作。为了提高数据的读写效率innodb会将一些数据缓存到内存中(buffer pool),在访问数据的时候首先查找内存,如果内存中有则直接访问,如果内存中没有,则按照一定的规则将数据加载到内存中。但是内存一般是比较昂贵的,一般不会将所有的数据
在当今高并发、大数据的时代,系统性能优化是非常重要的。而缓存优化作为提高系统性能的一种有效手段,被广泛应用于各种场景中。其中,冷热端分离和重排序是常见的两种缓存优化方式。本篇博客将详细介绍这两种优化方式的原理、实现和应用场景,希望能为您的系统性能优化提供帮助。缓存优化是提高系统性能的一种有效手段,其中冷热端分离和重排序是常见的两种优化方式。缓存优化冷热端分离缓存的命中率受多种因素影响,其中最重要的
转载 2024-04-24 14:16:39
74阅读
一 . 读写分离 1. 登录主库: ./mongo 192.168.56.88:27017 插入一条数据: testrs:PRIMARY> db.person.insert({"name":"zw","sex":"M","age":19}) testrs:
转载 2024-01-05 17:42:46
105阅读
背景随着财经支付业务的快速发展,考虑到未来订单量持续增长,在线存储遇到更大的挑战,需提前做好规划。目前财经支付主要业务都是使用 mysql(InnoDB)作为数据存储,因历史订单信息访问频率低并占用了大量数据库存储空间,期望将历史数据跟生产最新交易数据进行分离,当前数据库保留最近一段时间的数据作为热库,历史交易存入另一个数据库压缩存储作为冷库(rocksdb),即数据冷热分离。此举将会极大的节省
转载 2023-11-03 17:53:03
182阅读
随着云计算、大数据等新兴应用广泛普及,业务数据呈现爆炸式增长,海量数据的高效访问、经济存储和智能管理变得越来越重要。从数据生命周期来看,在数据刚生成并使用时,属于在线数据,在线数据访问的频率最高,数据的价值也最高,对数据访问的性能、数据的访问的连续性、数据逻辑错误后的恢复性有很高的要求,但随着时间的推移,在线热数据会逐步变成温数据,甚至冷数据和冰数据;据统计,超过30天的数据的使用率不到10%,但
    在某些应用场景中,随着时间的流逝,历史数据很少被访问,主要是访问新产生的数据。这种情况下会把很少访问的数据存储到IO比较慢的存储设备上,而把长期查询的数据存放到IO比较快的存储设备上面。比如,像网上交易系统,可以把几个月前的历史数据存放到机械硬盘上面,而把当月的数据存放到固态硬盘上面。从而让成本最优的情况下,提升用户体验。     pgo
根据Elasticsearch中文社区《ES冷热分离(读写分离) hot, stale 场景》一篇整理并测试修改后实现 本项目按照该原理实现读写分离写的数据如果需要实时被读取,实际上不可能实现完全的读写分离的。 分区读写分离方法:假设 集群有8个节点,node1,node2,node3,node4 为热区,设置为hot,node5,node6,node7,node8 为冷区,设置为stable.
 当使用ElasticSearch做大规模的时序数据分析的时候,我们建议使用基于时序的索引并且采用3种不同类型的节点组成分层架构(Master、Hot-Node、Warm-Node),也就是我们所说的"Hot-Warm"架构。Master Nodes我们建议使用3个独立的主节点来提供足够的弹性,为了防止脑裂的问题,你应该把discovery.zen.minimum_master_node
转载 2023-10-09 10:08:50
189阅读
前言这篇论文的读后感是我作为本科课程期间的一门大作业课程所需要完成的课外实践内容。如果能够对大家有所帮助就好,不过这一篇主要作为个人的小总结。提前告知,还望海涵。HotRing策略背景哈希索引是当前阿里公司在KVSes的中使用的最流行的内存结构,特别是当范围查询不需要上层应用程序时,由于原有哈希表的设计,访问此时应该是:N(总数)=1+L/2 //L是链表长度 L=N/B //N是总的item
  • 1
  • 2
  • 3
  • 4
  • 5